第Ⅳ編 参考資料
第Ⅳ編 参考資料 目次

<table>
<thead>
<tr>
<th>章節</th>
<th>目次</th>
</tr>
</thead>
<tbody>
<tr>
<td>第1章</td>
<td>生産土砂等の調査</td>
</tr>
<tr>
<td>第1節 総説</td>
<td></td>
</tr>
<tr>
<td>第2節 基礎調査</td>
<td></td>
</tr>
<tr>
<td>2.1 流域区分</td>
<td></td>
</tr>
<tr>
<td>2.2 水系図</td>
<td></td>
</tr>
<tr>
<td>第3節 現況調査</td>
<td></td>
</tr>
<tr>
<td>3.1 水源崩壊調査</td>
<td></td>
</tr>
<tr>
<td>3.1.1 調査対象</td>
<td></td>
</tr>
<tr>
<td>3.1.2 崩壊地の士砂量</td>
<td></td>
</tr>
<tr>
<td>3.1.3 1次谷の渓床土砂堆積量</td>
<td></td>
</tr>
<tr>
<td>3.1.4 とくしゃ地の生産土砂量</td>
<td></td>
</tr>
<tr>
<td>3.1.5 地すべり性大規模崩壊</td>
<td></td>
</tr>
<tr>
<td>3.2 渓流調査</td>
<td></td>
</tr>
<tr>
<td>3.2.1 範囲と測点</td>
<td></td>
</tr>
<tr>
<td>3.2.2 谷幅と渓床勾配</td>
<td></td>
</tr>
<tr>
<td>3.2.3 渓床土砂堆積量</td>
<td></td>
</tr>
<tr>
<td>3.2.4 流出形態の判別</td>
<td></td>
</tr>
<tr>
<td>3.2.5 渓床の土砂堆積地の形成年代及び移動現象の繰返し方</td>
<td></td>
</tr>
<tr>
<td>3.3 現況調査のまとめ</td>
<td></td>
</tr>
<tr>
<td>第4節 変動調査</td>
<td></td>
</tr>
<tr>
<td>4.1 変動の実測に基づく流出土砂量の推定</td>
<td></td>
</tr>
<tr>
<td>4.1.1 ダムへの流入土砂量</td>
<td></td>
</tr>
<tr>
<td>4.1.2 河床変動量調査の利用</td>
<td></td>
</tr>
<tr>
<td>4.1.3 流域の諸特性値による流出土砂量の推定</td>
<td></td>
</tr>
<tr>
<td>4.1.4 変動調査のまとめ</td>
<td></td>
</tr>
<tr>
<td>第5節 礫の調査</td>
<td></td>
</tr>
<tr>
<td>5.1 礫径調査</td>
<td></td>
</tr>
<tr>
<td>5.2 礫の堆積様式</td>
<td></td>
</tr>
<tr>
<td>5.3 堆積崖の礫の配列状況</td>
<td></td>
</tr>
<tr>
<td>5.4 岩種・岩質・形状</td>
<td></td>
</tr>
<tr>
<td>第6節 粒度調査</td>
<td></td>
</tr>
<tr>
<td>6.1 粒度調査方法</td>
<td></td>
</tr>
<tr>
<td>6.1.1 要旨</td>
<td></td>
</tr>
<tr>
<td>6.1.2 試料採取点の選定</td>
<td></td>
</tr>
<tr>
<td>6.1.3 採取の方法</td>
<td></td>
</tr>
<tr>
<td>6.2 粒度分析方法</td>
<td></td>
</tr>
</tbody>
</table>
第2章 土石流・流木対策計画における土砂量等の算出方法

第1節 流域内の移動可能土砂量
第2節 計画規模の年超過確率の降雨量によって運搬できる土砂量
第3節 計画流木発生量の算出方法

3.1 現況調査法による発生流木量の算出
3.2 実績値に基づく発生流木量の算出

第3章 ダムサイト等の調査

第1節 事前調査

2.1 総説
2.1.1 調査の概要
2.1.2 ダムサイトの一般的注意事項
2.1.3 概 査

2.2 設計調査
2.2.1 設計調査の範囲
2.2.2 調査の留意点
2.2.3 調査坑
2.2.4 ボーリング調査
2.2.5 岩盤区分
2.2.6 室内試験
2.2.7 原位置試験・変形試験
2.2.8 透水性試験及びルジオンテスト
2.2.9 総合解析

2.3 節 基礎処理の実施

第3節 水質調査

第4章 水系砂防計画

第1節 総説
第2節 計画規模
第3節 計画基準点
第4節 計画土砂量等

4.1 計画土砂量、土砂移動の形態
4.2 計画生産土砂量 .. IV・4・5
4.3 河道調節量 .. IV・4・8
4.4 最大洪水流砂量（計画流出土砂量） IV・4・10
4.5 計画許容流砂量 .. IV・4・10
4.6 計画超過土砂量 .. IV・4・13
第5節 土砂処理計画，砂防設備配置計画 IV・4・14
5.1 土砂処理計画 .. IV・4・14
5.1.1 土砂生産抑制計画（打止計画） IV・4・15
5.1.2 流出土砂抑制計画（貯砂計画） IV・4・16
5.1.3 流出土砂調節計画（調節計画） IV・4・17
第5章 砂防堰堤 .. IV・5・1
第1節 目的と型式 .. IV・5・1
1.1 土砂生産抑制施設としての砂防堰堤 IV・5・1
1.2 土砂流送制御施設としての砂防堰堤 IV・5・2
第2節 施設効果量 ... IV・5・3
2.1 掃流区間の不透過型砂防堰堤 .. IV・5・3
2.2 土石流区間の不透過型砂防堰堤 IV・5・4
2.3 土砂調節のための透過型砂防堰堤（掃流区間） IV・5・4
2.4 土石流捕捉のための透過型砂防堰堤（土石流区間） IV・5・6
第3節 土石流区間の不透過型砂防堰堤 IV・5・6
第4節 掃流区間の不透過型砂防堰堤 IV・5・6
4.1 設計流量 ... IV・5・6
4.2 水通し断面 .. IV・5・6
4.3 本体の設計 ... IV・5・8
4.3.1 水通し天端幅 .. IV・5・8
4.3.2 設計外力 .. IV・5・8
4.3.3 下流のり勾配 .. IV・5・9
4.4 安定条件 .. IV・5・9
4.5 安定計算 ... IV・5・9
4.6 袖の設計 ... IV・5・10
4.7 構造細目 ... IV・5・10
第5節 土石流区間の透過型砂防堰堤 IV・5・11
第6節 土砂調節のための透過型砂防堰堤（掃流対応） IV・5・11
6.1 水通し断面 ... IV・5・11
6.2 透過部断面 ... IV・5・11
6.2.1 透過部断面の位置 .. IV・5・11
6.2.2 透過部断面の大きさ ... IV・5・12
6.3 本体の設計 ... IV・5・13
6.3.1 水通し天端幅...IV・5・13
6.3.2 下流のり勾配...IV・5・13
6.3.3 安定計算...IV・5・13
6.4 摩耗対策...IV・5・14
6.5 前庭保護工...IV・5・15
6.6 構造細目...IV・5・15
第6章 山腹保全工...IV・6・1
第1節 山腹保全工の工種...IV・6・1
 1.1 地質および気象等の環境別工種.....................................IV・6・1
第2節 山腹工の設計..IV・6・7
 2.1 谷止工...IV・6・7
 2.2 のり切工...IV・6・7
 2.3 土留工...IV・6・8
 2.4 水路工...IV・6・9
 2.5 暗渠工...IV・6・9
 2.6 益工...IV・6・10
 2.7 積苗工...IV・6・11
 2.8 筋工...IV・6・11
 2.9 伏工...IV・6・12
 2.10 実播工..IV・6・13
 2.11 植栽工..IV・6・14
第7章 その他の水系砂防設備...IV・7・1
第1節 その他の水系砂防設備の概要.....................................IV・7・1
第8章 水系砂防での流木対策...IV・8・1
第1節 流木対策計画..IV・8・1
第2節 対象流木量...IV・8・1
第3節 水系砂防での流木対策施設計画...............................IV・8・1
第4節 掃流区間における流木対策施設...............................IV・8・2
 4.1 洪水、土砂量の規模等..IV・8・2
 4.2 流木捕捉工（掃流区間）の設計.....................................IV・8・2
 4.2.1 透過部の高さ...IV・8・2
 4.2.2 透過部における部材の検討................................IV・8・4
 4.2.3 全体の安定性の検討..IV・8・6
 4.2.4 部材の安定性の検討..IV・8・6
 4.2.5 透過部以外の設計...IV・8・7
 4.3 流木発生抑止工の設計...IV・8・7
第9章 砂防設備の環境対応...IV・9・1
第1節 生態系への配慮..IV・9・1
1.1 砂防堰堤 .. IV-9-1
 1.1.1 生態系への配慮1 (縦断方向の連続性の確保) .. IV-9-1
 1.1.2 生態系への配慮2 (横断方向の連続性の確保) .. IV-9-3
1.2 床固工 .. IV-9-3
1.3 護岸工 .. IV-9-3
1.4 渓流保全工 ... IV-9-4
第2節 景観等への配慮 ... IV-9-4
 2.1 基本理念 .. IV-9-4
 2.2 景観形成の基本方針 .. IV-9-6
 2.3 設計の対応 .. IV-9-8
第Ⅳ編 参考資料
第 1 章 生産土砂等の調査

第 1 節 総説

本章は、砂防計画の基本となる土砂等を決定するための資料を得ることを目的とする。荒廃渓流とその流域で生産される土砂及び流出する土砂、また流木対策が必要な場合の流木発生量に関する調査の標準的手法を定めるものである。 （建河調 p249）

解 説

調査を大別すると基礎調査、現況調査、変動調査及び両調査の 4 つに分類される。

（調査項目） （調査結果）

図 1.1.1 調査系統図
第2節 基礎調査

2.1 流域区分
基礎調査において、まず2万五千分の1地形図を用いて、砂防計画基準点より上流の流域を渓流ごとに区分し、それぞれの流域面積を求めることとする。（建河調p251）

2.2 水系図
基礎調査においては、本章2-1のほか5万分の1地形図を用いて水系図を作製し、谷を次数ごとに区分するものとする。（建河調p251）

解説
谷次数ストレーラーの方法により区分し、次数ごとの崩壊土砂量や流出土砂量の関係を把握するとき利用する。谷と山腹の判定方法は、図1-2-2のように、地形図の等高線の凹み具合で間口よりも奥行が大きい場合に1次谷とし、その反対の場合には山腹とみなすものとする。

また、河道とは谷の始まる地点から下流とすると、ある基準点からの河道長とは1次谷の最上流端までである。

谷の次数については、一次谷と一次谷が合流すると二次谷となるというように、同次の谷が合流するとその谷の次数プラス1の谷数となる。

図1-2-1 谷の次数区分 図1-2-2 1次谷の判定

図1-2-3 谷次数
第３節 現況調査

３．１水源崩壊調査

３．１．１ 調査対象

水源崩壊調査は山腹崩壊地と渓岸崩壊地及びその母体となる地域の他、1次谷の渓床を対象として行うものとする。（建河調 p252）

３．１．２ 崩壊地の土砂量

流域内の全崩壊地について、踏査実測によるか空中写真を併用する方法で崩壊の状況と土砂生産に関係する諸元を調査し、現況における崩壊残土量と将来における拡大生産見込土砂量とを推定するものとする。（建河調 p252）

解説

対象は急峻な箇所であるから、ポケットコンパス、ハンドレベル、クリノメーター、間縄等の簡単な測器でよい。

空中写真を使用する場合は1支渓の中で少なくても1箇所は案測によって面積を調査し、結果を照合しておかなければならない。

（1）土砂供給地点の表示

図1-3-1 土砂供給地点の表示

前図により崩壊地A及びBの土砂供給地点は河道距離16.0 km、Cは15.5 km、Dは15.3 kmとなる。
なお、砂防計画基準点を0mとするのを原則とする。

（2）元斜面の設定

最初に崩壊が起こる前の元斜面を推定して設定する。この作業は個人差が生じやすいので、できるだけ崩壊面に多数の縦横断線を設けて図面上で設定することが望ましい。目測で推定する場合には崩壊地に接続する形状に準ずることが判断の基準となる。
第Ⅳ編 参考資料 第1章 生産土砂等の調査

図 1-3-2 元斜面の設定

(3) 平均幅、平均長、面積、平均深の決定
平均幅及び平均長は元斜面と崩壊面との交点間の平均長で表す。
面積は正面からみて交点を連ねた図形の面積である。
平均深は元斜面と崩壊面までの深さの平均である。
崩壊土と残土とは別に計上する。

(4) 崩壊土量、残土量、流出土砂量の決定
崩壊面積×崩壊平均深=崩壊土量(A)
残土面積×残土平均深=残土量(B)
(A) - (B) = 流出土砂量

(5) 拡大生産見込量
現地を眺めて崩壊がどれだけ拡大するかを検討し、その場に生産される(崩落する)土砂を推定する。

(6) 地質の調査
拡大生産土砂量を算定するため、崩壊を起こした地層が何であるかを調査する。
地質の分類
(イ) 崩積土 ………… 崩落し堆積した土
(ロ) 表土 …………… 表面の土
(ハ) 風化残積土 …… 基岩の風化物
(ニ) 岩 ……………… 岩盤
前記(ハ)、(ニ)については岩質も調べる。

(7) その他
(イ) 流心に対する角度

注）渓岸崩壊の中心線方位と流心の方位の角度差で表現する。
\[A^\circ - B^\circ = C^\circ \]
形状
①半円形状②樹枝状③スプーン状④三日月状等形状の特徴をおさえて簡単に表現する。

図 1-3-4 土砂崩壊の形状

以上の調査結果を表 1-3-1 に記入する。

表 1-3-1 崩壊現況調査表

3.1.3 1次谷の渓床土砂堆積量
1次谷においては、合流点から常時湧水点までの間の渓床土砂堆積量を求めるものとする。
1次谷の渓床土砂堆積量は便宜上1次谷の末端の地点におけるものとし、河道距離でその位置を表すものとする。
（建河調 p254）

3.1.4 とくしゃ地の生産土砂量
いわゆる「とくしゃ地」からの生産土砂量を測定するには、原則として次の2方法のいずれかによるものとする。
1. 直接的方法……測定しようとする区域に2～5mのメッシュの測線を設定し、その交点に杭を打つ。杭頭の地表面状の「出」を測定し、前回の測定値と差し引きして表土の移動深を求め、その杭の分担面積を乗じ、更に区域を集計して生産土砂量を求めるものである。
2. 間接的方法……とくしゃ地から流出する土砂量を適当な「ます」で受けて測定しようとする法で、一例として短侵食渓の下のダムを利用するものである。
（建河調 p254）
第Ⅳ編 参考資料 第1章 生産土砂等の調査

3.1.5 地すべり性大規模崩壊

対象地域内における構造破砕帯の地区等、地すべり地の存在する地区を重点的に、地すべり性の大規模崩壊が発生する地形、地質条件のある土地を空中写真、現地踏査等によって確認し、生産見込土砂量等を本章3-1-2の崩壊地の土砂量と同様に推定するものとする。（建河調p255）

解説
地すべり性大規模崩壊発生に関する地質地形条件として着目すべきものは次のようなものである。

(1) 構造破砕帯地域
(2) 大規模斜面の存在
(3) 山腹斜面変換線の存在
(4) 地すべり性地形の存在

3.2 渓流調査

3.2.1 範囲と測点

本章3-2-2以降についての調査の範囲は、原則として砂防計画基準地点より上流に向かって本流及び支流の本章2-2による2次谷の上流端までとし、主に掃流区域において河床変動の顕著な比較的長い区間を対象とする場合の調査に適用する。

解説
固定測点は測点間隔を50mの整数倍でかつ谷幅の概ね2倍程度を標準とし、谷幅の4倍を超えないように設ける。測点の呼称は河道縦断線に沿う累加距離とする。累加距離の起点は、砂防計画基準点あるいは近傍に河川距離標がある場合にはこれと連結した点として設定する。

3.2.2 谷幅と渓床勾配

固定測点を設けた地点（似下測点という）で谷幅と渓床勾配を測定し、これらを河道縦断線に沿う累加距離（以下河道距離という）に対してプロットし、谷幅及び渓床勾配変化図に整理するものとする。（建河調p256）
第Ⅳ編 参考資料 第1章 生産土砂等の調査

解説

谷幅及び渓床勾配変化図は次図のようである。

3.2.3 渓床土砂堆積量

各測点で渓床堆積土砂の堆積深を求めて、各測点間の渓床土砂堆積量を算出し、河道距離に対してプロットして渓床土砂堆積量図に整理する。

解説

堆積深は、ダム等の床堀断面や周囲の洗掘断面の観察等を手がかりとする。堆積深と本章3.2.2の谷幅とから各測点間の渓床堆積土砂量を算出し、その量を河道距離に対してプロットして次図のような渓床土砂堆積図を作製する。

3.2.4 流出形態の判別

渓床土砂堆積地の形状と断面を観察及び測定することによって、堆積が掃流によって形成されたもののか、土石流によって形成されたものかを判断し、この結果を河道距離に対してプロットして、主として掃流状態で土砂運動が行われる区域(掃流区域)と、そうでない区域(土石流区域)とに区分する。

図1-3-6 渓床土砂堆積量図
第IV編 参考資料 第1章 生産土砂等の調査

図1-3-7 渓床堆積地の形状による分類

図1-3-8 渓床堆積地の断面の粒径による分類

図1-3-9 掃流堆積物スケッチ例

図1-3-10 堆積プロット例
3.2.5 流域の土砂堆積地の形成年代及び移動現象の繰返し方

流域の土砂堆積地に木本科植物群落がある場合に限って、この調査を行うことができる。
流域土砂堆積地の形状からみて累次の前後関係を判定し、その上に存在する木本科群落の年代調査を行って土砂の堆積年代を推定するものとする。調査地点の情報として得られた堆積年代を河道縦断距離に対してプロットし、流域土砂の各年代ごとの移動傾向を推定する。 (建河調 p258)

解説

木本科植物群落による年代調査は、林分の形態（天然生同令林分であること）と、林分を形成する個体が圧迫を受けた場合に現れる反応の特徴を、年輪から読み取って土砂の堆積年代を推定する方法である。
調査地点の情報に距離的要素を加えて、水系として解析するための図は図1-3-11のように作製する。この図から、資料が多く蓄積されれば、堆積地の移動頻度、出水量と対応した移動距離、移動に関する水系のパターンによる堆積地帯と流過地帯の時間的確認など多くの事項が判明する可能性がある。
(上記調査は段丘地形に必要である)

3.3 現況調査のまとめ

水源崩壊地及び渓流の現況調査により、次のような成果をとりまとめるものとする。
1.渓流における区間ごとの包蔵土砂量
2.堆積地帯と流過地帯の区分
3.土石流区域と掃流区域の区分
4.渓床土砂堆積地の移動現象の繰返し方

(建河調 p259)

図 1-3-11 現況調査のまとめ例
第4節 変動調査

4.1 変動の実測に基づく流出土砂量の推定

4.1.1 ダムへの流入土砂量

適当な箇所に調査ダムが得られる場合には、ダムへの流入土砂量を測量してその地点における流出土砂量を求めるものとする。未満砂ダムにおける調査は、測量時期を選択することにより1洪水流出土砂量及び平均流出土砂量のいずれも求めることができる。流出土砂量推定方法としては最も望ましい。（建河調p260）

解説
流出土砂量を求めようとする流域の最上部にある堰堤で、2時期に堆積土砂の測量を行い、その差をもって期間の流入土砂量、すなわち流出土砂量とする。
測量範囲は貯水池内と貯水池に接続する河道で、貯水池に河床の変動が支配される区域とする。未満砂堰堤は、調査時期を洪水の前後に選べば1洪水流出土砂量が求まり、年間1回の測量を数回繰り返して回数で除せば、平均流出土砂量を求めることができる。上記は実測の縦断面図、横断面図により算出する。

4.1.2 河床変動量調査の利用

次の場合には、河床変動量調査により流出土砂量の推定を行うことができる。

1. 土石流区域について
土石流堆積物による河床変動量から土石流による1洪水流出土砂量を推定する場合。

2. 掃流砂区域について
調査対象区域の最下流端で土砂流出がおおむね阻止されるような状態、例えば、ダムなどが存在するような区域での河床変動量から1洪水流出土砂量あるいは1年間ごとの流出土砂量を推定する場合。

（建河調p263）

解説
河床変動調査により流出土砂量をもとめようとした場合、調査区域の下流端で流出土砂が阻止されない場合には、河床変動の振幅が削減しほぼ平衡状態に達している区域まで調査し、その有効性を検討しておく必要性がある。

河床変動量調査の整理は次表のようにする。

表 1-4-1 河床高、河床土砂容積計算書
4.1.3 流域の諸特性値による流出土砂量の推定

調査しようとする流域の特性が、いわゆる流出土砂量算定式の適合度の高い条件に合致する場合には、流出土砂量算定式による流出土砂量の推定を行うものとする。

説明

流出土砂量算定式として、村野式や江崎式がある（建設省河川砂防技術基準（案）参照）。これらの算定式は地質や流域面積等により適合度が変化するが、それらが適合度の高い条件に合致する場合には流出土砂量の目安とすることができる。

4.1.4 変動調査のまとめ

調査量に基づいて計画流出土砂量を決定する場合の基幹となるものは変動調査による調査量である。

変動調査の調査量は、調査地点での流出土砂量、あるいは調査区間での土砂の移動収支の姿で得られるものであるから、それを支配する条件との関係を考察して計画基準点における流出土砂量を推定するものとする。

説明

変動調査による調査量は河道の縦断距離に沿ってプロットする。

計画量は調査量をもとに決定すべきものであり、調査量の積み上げが必要であるが、現状では1回だけの調査量によって計画を策定しなければならない場合が多い。このような場合にも、得られた資料に現象の時間的経過と場所的条件を導入して決定する。
第5節 磯の調査

5.1 磯径調査

礫径調査には、粒度分析:ふるい分け法（JIS規格）、表面礫径:線格子法・面格子法・最大礫径・石礫指標などのかたまりがあるが、粒度分析は、流砂量計算をするたとえに行うことが多い。しかし、流域の土砂流出特性を探る目的であれば、表面粒径の計測だけで十分である。

礫径調査の範囲は、砂防堰堤計画地点より上流の渓床および下流の各々200m間とし、その間における200個以上の巨礫の粒径を測定する。

礫径の計測は、図1-6-1より、長径（a）・中径（b）・単径（c）を目測またはコンベックスにより計測するか、場合によっては、フルイに通して計測するものとし、礫径（d）は、

\[d = \frac{a + b + c}{3} \]

より算出する。

図1-5-1 磯の計測方法

表面礫径は、堆積状態の区分（堆積地の新旧など）や礫径の変化のみられる区間をその代表地点でサンプリングするものとし、表面礫径を計測するためのサンプリング方法と最大礫径・石礫指標の計測方法について述べる。

＜礫のサンプリング方法＞

表面礫径を計測するためのサンプリング方法は、線格子法または面格子法を使用するものとし、その方法は図1-5-2のとおりである。線格子法では、対象とする堆積地や渓床の縦断方向または横断方向にメートル縄を張り、礫径にあわせて定間隔で格子を採り、その真下の礫を採取し礫径を計測するものである。格子点の間隔は、最大礫径を目安に50cmまたは1m単位とする。

(1)線格子法

(2)面格子法

図1-5-2 表面粒径の計測方法
面格子法は、礫径10cm以下の小径の堆積地で使用するのが便利である。サンプリング方法は、1.0m～2.0m程度の木枠に、縦横10等分になるように糸を張り、堆積面上に置き、各格子点の下の礫をサンプリングする。したがって、試料数は、最大101個となる。
両者とも、試料採取に当たって、格子点の下の礫が、たとえば、砂のように小さい場合には、砂なら砂とし、目測によりmm単位で計測し、試料として加えるものとする。

＜最大礫径・石礫指標＞
最大礫径のサンプリングは、横断測量や堆積地調査時に実施するものとし、したがって、サンプリング間隔は、50～100mを目安とし、且つ、縦断上で礫径に変化のみられるところとする。渓流長が長い場合、サンプリング間隔を長くすることは可能である。最大礫径は図1-5-3のように、横断測線を基準に、上・下流に幅5m程度の範囲で最大のものをサンプリングし、先の要領で計測する。

石礫指標：10m四方内の大きい礫10個の平均

図1-5-3 最大礫径・石礫指標のサンプリング
石礫指標は、最大礫径と同様に、横断測量や堆積地調査時に実施する測点で実施するものとする。サンプリングは、図1-5-3に示したように、測点位置でおおむね10m四方の枠を設定し、枠内で礫の大きい方から10個選び礫径を計測し、その平均の礫径を算出するaこの凍径の平均値を石礫指標という。

＜移動している礫径＞
礫にはコケが付着し、長期間移動していないものや最近（ある洪水で）移動したものとみられるものがある。
移動している礫径の調査では、図1-5-4のように、最近動いたと思われる礫径の最大のものと、移動していない礫径の最小のものを比較しながら、礫径を決めていく。一般には同者を明確に区別することは難しく、重複していると思われる。
他に、踏査の時点で小规模な堆積地に典型的にみられる直径（目測で計算処理したものである）などがあれば、野帳に記載しておくようにする。
5.2 砾の堆積様式
渓床内の平面的な土砂の堆積様式が層状であるかブロック状であるかにより、土砂流出形態が土石流形態か、掃流形態なのかを判別することができる。土石流の流動は、図1-5-5のように考えられており、土砂はブロック状の堆積を示す。したがって、図1-5-6に示したように平面的な土砂の堆積状況により、土砂の移動形態を判別する。

(1) 平面形
(2) 縦断形

図1-5-5 土石流による堆積状況

(1) 土石流
(2) その他

図1-5-6 砾の堆積様式

また、図1-5-7のように、堆積崖においては礫の配列状態を調査し、堆積地が土石流により形成されたもの(1)か、掃流状の土砂移動により形成されたもの(2)か判断する。

(1) 土石流(ランダム)
(2) 掃流(層状)

図1-5-7 堆積崖の礫の配列状況

5.3 堆積崖の礫の配列状況
渓床堆積地の形成過程は、大きく、洗掘によるものと堆積によるものとに分けることができ、特に、階段状堆積地で堆積時期、洗掘時期が異なっている場合、各堆積崖の礫の配列状況により、堆積地の形成について、堆積か洗掘かの判断が可能である。
図1-5-8のように、堆積地が接し階段状になっている場合には、堆積地間での藻の配列状態の整合性を調査し、整合・不整合により、次のように堆積地を判別する。
整合(1): 堆積地Bは、もっともAと一体のものであり、a年前に形成されたが、b年前にその一部が洗掘され、堆積地Bとなった。
不整合(2): 堆積地Bは、a年前に形成されたAに対し、b年前に新たな土砂の堆積があり、
堆積地Bとなった。

(1) 洗掘 (整合) (2) 堆積 (不整合)

図1-5-8 階段状堆積地の堆積崖の礫の配列状況

5.4 岩種・岩質・形状
堆積礫については、礫径の他に、以下について礫の状況を記す。

岩種：堆積礫の発生源を知るため、地質との関係から岩種を記載する。
岩質：礫の磨耗・破砕に対する強度すなわち、割れ易さなどを記載する。
形状：礫の発生源の岩質・遠近などに左右されるが、円礫・角礫など礫の形状を記載する。
第6節 粒度調査

6.1 粒度調査方法

6.1.1 要 旨
この試験は、河床および海底底質を採取し、その平均粒径を求めるものである。

6.1.2 試料採取点の選定
試料採取点は、河床および海底が比較的整正で表面における砂礫の分布状態が標準的な地点を選定しなければならない。

6.1.3 採取の方法
(1) 最大礫の中径（長径と短径の平均値）が、1,000mm以上の試料採取は、次によるものとする（砂礫採取図参照）。
① 採取点を中心に4×4mの採取地を設定し、堆積面から浮いて孤立した礫とさらに表面から30cm以上の深さの表層を取り除く。
② 採取地を4等分した2×2m区間内の表面に分布する砂礫のうち中径500〜1,000mmの礫を採取し、各礫の中径を計算する。
③ 採取地を16等分した1×1mの区域内で深さ50cm以内に存在する中径500mm以下の砂礫を採取する。採取した砂礫のうち、中径100〜500mmの礫については、各礫の中径を計算する。100mm以下の砂礫は、その全重量を測定する。
④ 100mm以下の礫を四分法により約50kg程度持ち帰り、その全量についてフルイ分け試験（JISA1102）を行う。
⑤ 4×4mの採取地の全表面に分布する中径1,000mm以上の礫を採取し、各礫の中径を計算する。
(2) 最大礫の中径が500〜1,000mmの試料採取は、次によるものとする。
① 採取点を中心に2×2mの採取地を設定し、堆積面から浮いて孤立した礫とさらに表面から30cm以上の深さの表層を取り除く。
② 採取地を4等分した1×1m区域内で深さ50cm以内に存在する中径500mm以下の砂礫を採取する。採取した砂礫のうち100〜500mmについては、各礫の中径を計算する。100mm以下の砂礫は、その全重量を測定する。
③ 100mm以下の礫を四分法により約50kg程度持ち帰り、その全量についてフルイ分け試験（JISA1102）を行う。
④ 次に2×2mの採取地の全表面に分布する中径500mm以上の礫を採取し、各礫の中径を計算する。
(3) 最大礫の中径が200〜500mmの試料採取は、次によるものとする。
① 採取点を中心に1×1mの採取地を設定し、堆積面から浮いて孤立した礫とさらに表面から30cm以上の深さの表層を取り除く。
② 1×1m区域内で深さ50cm以内に存在する中径500mm以下の礫を採取する。採取した砂礫のうち、中径100〜500mmについては、各礫の中径を計算する。100mm以下の砂礫は、その全重量を測定する。
③ 100mm以下の礫を四分法により約50kg程度持ち帰り、その全量についてフルイ分け試験
(JISA1102)を行う。
(4) 最大礫の中径が 200 mm以下の場合、次によるものとする。
① 採取点を中心に 1×1m の採取地を設定し、堆積面から浮いて孤立した礫とさらに表面から 30cm以上の深さの表層を取り除く。
② 1×1m区域内で深さ 50cm 以内に存在する中径 200mm以下の砂礫を採取する。採取した砂礫のうち、中径 100〜200mmの礫については、各礫の中径を計算する。100mm以下の砂礫は、その全重量を測定する。
③ 100mm以下の礫を四分法により約 50kg程度持ち帰り、その全量についてフルイ分け試験(JISA1102)を行う。
(5) 水中砂礫および海底底質の試料採取は、次によるものとする。
① 採取にあたっては、粒度分布を乱さないように採取しなければならない。
② 採取量は、JISA1102 および JISA1204 によるものとする。

![砂礫採取図](image)

(イ) 1,000mm以上の礫調査範囲
(ロ) 500〜1,000mm
(ハ) 200〜500mm

表 1-6-1 砂礫採取表

<table>
<thead>
<tr>
<th>砂礫の中径</th>
<th>採取面積</th>
<th>表面取除深さ</th>
<th>採取深さ</th>
<th>採取量</th>
<th>フルイ分け量</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,000mm以上</td>
<td>4×4m</td>
<td>30cm以上</td>
<td>最大礫長径</td>
<td>JISA1102及び JISA1204による</td>
<td></td>
</tr>
<tr>
<td>500〜1,000mm</td>
<td>2×2m</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>200〜500mm</td>
<td>1×1m</td>
<td>"</td>
<td>50cm</td>
<td>約 0.5m³</td>
<td>"</td>
</tr>
<tr>
<td>200mm以下</td>
<td>1×1m</td>
<td>"</td>
<td>30cm</td>
<td>約 0.3m³</td>
<td>"</td>
</tr>
</tbody>
</table>

表 1-6-2 砂礫採取表

<table>
<thead>
<tr>
<th>砂礫の中径</th>
<th>採取面積</th>
<th>表面取除深さ</th>
<th>採取深さ</th>
<th>採取量</th>
<th>フルイ分け量</th>
</tr>
</thead>
<tbody>
<tr>
<td>水中砂礫</td>
<td></td>
<td></td>
<td></td>
<td>JISA1102及び JISA1204による</td>
<td></td>
</tr>
<tr>
<td>海底砂礫</td>
<td>2×2m</td>
<td></td>
<td></td>
<td>"</td>
<td></td>
</tr>
</tbody>
</table>

IV-1-17
6.2 粒度分析方法

6.2.1 謝粒度分析

(1) 最大礫の中径が1,000mm以上の粒度分析は、次の各号により行うものとする。

① 礫の容積vは、その形状を近似円体と仮定し、\(v = \frac{\pi abc}{6}\)で計算する。ただし、a、c はそれぞれ礫の長径、短径の長さであり、また、中径は\(b = \frac{a + c}{2}\)である。

② 礫の重量は、前号求めた容積に比重を一定と考えて \(w = v \times \text{比重}\)で計算する。

③ 中径500〜1,000mmの礫は、採取地の表面等に分布しているものとして、測定した個数を4×4の区域内に拡大してその全表面個数とする。

④ 求める礫の採取地内にある中径500〜1,000mmの礫全個数は、bの深さに分布するものとして次式に求める。

\[
\text{採取地内にある中径500〜1,000mmの礫全個数は、}
\]
\[
\frac{b}{\text{平均中径}} \times (\text{表面の個数})
\]

ただし、\(b = \text{最大長径} \div \frac{\text{中径1,000以上の礫容積計}}{\text{採取地の面積}}\)

⑤ 中径500mm以下の礫容積は、採取すべき全容積（4×4m×最大径の長径）から前号より算出した中径500〜1,000mm以上の礫容積の合計を差し引いた残りとする。

⑥ 100mm以下の砂礫は、JASA1102およびJISA1204による。

(2) 最大礫の中径が500〜1,000mmの粒度分析方法

① 礫の容積vは、その形状を近似円体と仮定し、\(v = \frac{\pi abc}{6}\)で計算する。

② 礫の重量は、第1号で求めた容積に比重を一定と考えて \(w = v \times \text{比重}\)で計算する。

③ 求める礫の採取地内にある中径500〜1,000mmの礫全個数は、bの深さに分布するものとして次式に求める。

\[
\text{採取地内にある中径500〜1,000mmの礫全個数は、}
\]
\[
\frac{b}{\text{平均中径}} \times (\text{表面の個数})
\]

ただし、\(b = \text{最大長径}\)

④ 中径500mm以下の礫容積は、採取すべき全容積（2×2m最大径の長径）から第3号により算出した中径500〜1,000mm以上の礫容積の合計を差し引いた残りとする。

⑤ 100mm以下の砂礫は、JISA1102およびJISA1204による。
(3) 最大礫の中径が 500mm以下の粒径分布方法

① 礫の容積 v は、その形状を随円体と仮定し、
\[v = \frac{\pi}{6} abc \]
で計算する。

② 礫の重量は、前号で求めた容積に比重を一定と考えて \(w = v \times \) 比重で計算する。

③ 中径 500mm以下の礫容積は、採取すべき全容積とする。

④ 100mm以下の砂礫は、JISA および JISA1204 による。

(4) 水中砂礫及び海底底質の粒度分布方法
JISA および JISA1204 による。

(5) 粒度区分は、次のとおりとする。

① 1,000mm以上は 200mmごとに区分する。

② 1,000mm〜100mmは次のとおりとする。

③ 100mm以下は、JISA1102 及び JISA1204 による。

6.2.2 粒度曲線平均粒径及び混合比の求め方

1) 粒度曲線図は、各粒径区分ごとの通過百分率で作成する。

2) 平均粒度 dm は、次式にて算出する。
\[
dm = \frac{\sum_{P=0}^{100\%} d \Delta P}{\sum_{P=0}^{100\%} \Delta P}
\]
ただし、\(P \) は残留百分率

\(d \) = フルイ目の寸法の中間値(各粒径グループの中央値)mm

\(\Delta P \) : フルイ目の開に対する残留百分率

混合比 \(\lambda \) は、次式で算出する。
\[
\lambda = \frac{(100\% - Pm\%)}{Pm\%}
\]
ただし、\(Pm \) は平均粒径に相当する通過百分率である。

6.2.3 資料整理

1. 砂礫粒度調査表
2. 粒度曲線図
3. フルイ分け試験
4. 土の粒度試験表
5. 外業日誌
6. 試験採取点の状況写真(遠近の両方)
7. 各作業写真
8. 比重試験表
9. その他
第Ⅳ編 参考資料 第1章 生産土砂等の調査

第7節 流木の基礎的調査

7.1 流域現況調査

流出流木量を算出しようとする地点より上流域における立木、植生および倒木（伐木、用材を除く）を調査する。

(砂土計 p38)

解説

次のような調査を通じて、流木対策に関する基礎資料を得る。

1 林相等の状況把握

空中写真判読や現地調査を通じて、林相区分図（植生区分図）を作成し、対象流域の林相等の状況を把握し、立木等のサンプリング位置等を検討する基礎資料を得る。

林相区分図（植生区分図）では、樹木の密度（概算）、樹高、樹種等の状況を整理する。

2 流木発生状況等の把握

空中写真判読や現地調査を通じて、流木の発生状況（土砂生産の状況）や渓床に堆積している流木の状況を把握し、発生流木量の算出方針等を検討する。

また、流木による被害の推定を行い、より的確な対策検討のための基礎資料とする。

7.2 発生原因調査

流域現況調査結果を総合的に判断して、流木の発生原因を推定する。

(砂土計 p38)

解説

流木の発生原因を推定することは、流木の発生場所、流木の量、長さ、直径および流木による被害等を推定する上で重要である。地形が急峻で脆弱な場合には、豪雨時に土石流や斜面崩壊が起こりやすく、それにともなって地表を覆う樹木が渓流や河道に流入して流木となる。また、過去の流木災害の事例から流木の発生原因を推定することも有効な方法である。流木の発生原因を表1-7-1に示す。

(砂土計 p39)

表1-7-1 流木の発生原因

<table>
<thead>
<tr>
<th>流木の起源</th>
<th>流木の発生原因</th>
</tr>
</thead>
<tbody>
<tr>
<td>立木の流出</td>
<td>①斜面崩壊の発生にともなう立木の滑落</td>
</tr>
<tr>
<td></td>
<td>②土石流等の発生源での立木の滑落・流下</td>
</tr>
<tr>
<td></td>
<td>③土石流等の流下にともなう渓岸・渓床の侵食による立木の流出</td>
</tr>
<tr>
<td>過去に発生した倒木等の流出</td>
<td>④病虫害や台風等により発生した倒木等の土石流等による流出</td>
</tr>
<tr>
<td></td>
<td>⑤過去に流出して河床上に堆積したり河床堆積物中に埋没していた流木の土石流等による再移動</td>
</tr>
<tr>
<td></td>
<td>⑥雪崩の発生・流下にともなう倒木の発生とその後の土石流等による下流への流出</td>
</tr>
</tbody>
</table>

(砂土計 p39)
7.3 流木発生場所、立木、倒木の調査

流域現況調査、流木の発生原因を参考に立木や倒木の量、大きさを算出する基礎データを得る。

解説

1. 流域現況調査、流木の発生原因を参考に流木の発生場所（崩壊および土石流にともない流木が発生する場所）を推定する。

土石流の発生、流下する範囲を推定する方法は原則として本章第2節2．2渓流調査による方法を用いる。降雨時に発生・流下する崩壊、土石流の範囲が推定されれば、次に、崩壊や土石流の発生、流下範囲に存在する立木、倒木および過去に発生して渓床等に堆積している流木等の量（本数、材積）や長さ、直径を調査することにより発生流木量、その長さおよび直径を推定することができる。

（砂土計 p39）

2. 流木の発生場所、林相（植生）区分図をもとに立木、倒木のサンプリング調査箇所を抽出する。

林相区分図（植生区分図）により、崩壊、土石流の発生・流下範囲を同一の植生、林相となるようにいくつかの地域に区分し、サンプリング調査箇所を抽出する。

3. 立木のサンプリング調査は、谷幅（横幅）×延長が100㎡となる範囲で、以下の項目について調査を行う。

（砂土計 p40 一部改）

①密度あるいは本数：樹木、伐木、倒木、流木等の100㎡あたりの本数
②直径：樹木の胸高直径、伐木、倒木、流木の平均直径
③長さ：樹木の高さあるいは伐木、倒木、流木の長さ

4. 渓床面に倒木等が堆積している場合は、別途、堆積地で上記の調査を行う場合もある。

5. ただし、倒木、伐木、渓床に堆積している流木で、伐木や用材の流出等に加わったものは発生流木量には含めないものとする。

（砂土計 p39 一部改）
第2章 土石流・流木対策計画における土砂量等の算出方法

第1節 流域内の移動可能土砂量

流域内の移動可能土砂量は、水土崩壊調査、渓流調査等の結果に基づき算出する。

流域内の移動可能土砂量(V_{dy1})は、次式で算出する。

$$V_{dy1} = V_{dy11} + V_{dy12}$$

V_{dy11}：流域内の移動可能渓床堆積土砂量(m³)

V_{dy12}：崩壊可能土砂量(m³)

流域内の移動可能土砂量を算出しようとしている地点、計画基準点あるいは補助基準点から1次谷の最上流端までの区間の移動可能渓床堆積土砂量(m³)

流域内の移動可能土砂量を算出しようとしている地点、計画基準点あるいは補助基準点から1次谷の最上流端までの区間の移動可能渓床堆積土砂量

$$V_{dy11} = A_{dy11} \times L_{dy11}$$

A_{dy11}：移動可能渓床堆積土砂の平均断面積(m²)

L_{dy11}：流出土砂量を算出しようとしている地点、計画基準点あるいは補助基準点から1次谷の最上流端まで渓流に沿って測った距離(m)

B_d：土石流発生時に侵食が予想される平均渓床幅(m)

D_e：土石流発生時に侵食が予想される渓床堆積土砂の平均深さ(m)

流域内の移動可能土砂量を算出する際のB_d、D_e、A_{dy11}は渓流調査結果を用いる。

崩壊可能土砂量(V_{dy12})は、以下に示す方法で算出する。

0次谷の崩壊を含めた次式で、崩壊可能土砂量を推定する。

$$V_{dy12} \approx \Sigma (A_{dy12} \times L_{dy12})$$

A_{dy12}：0次谷における移動可能渓床堆積土砂の平均断面積(m²)

L_{dy12}：流出土砂量を算出しようとする地点より上流域の1次谷の最上端から流域の最遊点までの流路谷筋に沿って測った距離(m)で、支渓がある場合はその長さも加える。

土石流発生直後など現存する移動可能土砂量が少ない場合でも、山腹や渓岸の土砂生産が激しく、近い将来に移動可能土砂量が増加すると予想される場合には、これを推定して加える。

なお、B_d、D_e、A_{dy12}は渓流調査結果を用いる。

IV-2-1
第IV編 参考資料 第2章 土石流・流木対策計画における土砂量等の算出方法

図2-1-1 L_{dy11}, L_{dy12} のイメージ（砂土計p33一部加筆）
（参考）平均侵食深の調査の一例

<table>
<thead>
<tr>
<th>発生年</th>
<th>月</th>
<th>日</th>
<th>都道府県名</th>
<th>市町村名</th>
<th>渓流名</th>
<th>平均侵食深 (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>1</td>
<td>1</td>
<td>山梨県</td>
<td>西八代郡 下部町</td>
<td>下部川</td>
<td>2.0</td>
</tr>
<tr>
<td>2001</td>
<td>8</td>
<td>21</td>
<td>東京都</td>
<td>三宅村</td>
<td>岡堀沢</td>
<td>2.0</td>
</tr>
<tr>
<td>2001</td>
<td>8</td>
<td>21</td>
<td>東京都</td>
<td>三宅村</td>
<td>川田沢支川</td>
<td>3.0</td>
</tr>
<tr>
<td>2001</td>
<td>9</td>
<td>6</td>
<td>鹿児島県</td>
<td>西之表市</td>
<td>軍場第1</td>
<td>1.5</td>
</tr>
<tr>
<td>2001</td>
<td>10</td>
<td>16</td>
<td>大分県</td>
<td>南海部郡 蒲江町</td>
<td>土後川</td>
<td>0.6</td>
</tr>
<tr>
<td>2001</td>
<td>10</td>
<td>16</td>
<td>大分県</td>
<td>南海部郡 蒲江町</td>
<td>尾浦川第2</td>
<td>1.0</td>
</tr>
<tr>
<td>2001</td>
<td>10</td>
<td>16</td>
<td>宮崎県</td>
<td>日南市</td>
<td>北川内川</td>
<td>2.0</td>
</tr>
<tr>
<td>2002</td>
<td>1</td>
<td>1</td>
<td>新潟県</td>
<td>佐渡郡 相川町</td>
<td>茶の助沢</td>
<td>1.0</td>
</tr>
<tr>
<td>2002</td>
<td>7</td>
<td>10</td>
<td>岐阜県</td>
<td>郡上郡 八幡町</td>
<td>栃形谷</td>
<td>0.5</td>
</tr>
<tr>
<td>2002</td>
<td>7</td>
<td>11</td>
<td>栃木県</td>
<td>安蘇郡 田沼町</td>
<td>上清水沢</td>
<td>1.0</td>
</tr>
<tr>
<td>2002</td>
<td>9</td>
<td>2</td>
<td>高知県</td>
<td>吾川郡 伊野町</td>
<td>是友大谷川</td>
<td>0.5</td>
</tr>
<tr>
<td>2003</td>
<td>6</td>
<td>21</td>
<td>宮崎県</td>
<td>北諸郡郡 三股町</td>
<td>仮屋谷川</td>
<td>1.0</td>
</tr>
<tr>
<td>2003</td>
<td>7</td>
<td>20</td>
<td>熊本県</td>
<td>水俣市</td>
<td>園郷川</td>
<td>1.2</td>
</tr>
<tr>
<td>2003</td>
<td>7</td>
<td>20</td>
<td>新潟県</td>
<td>水俣市</td>
<td>新屋敷</td>
<td>2.0</td>
</tr>
<tr>
<td>2004</td>
<td>7</td>
<td>18</td>
<td>福井県</td>
<td>鶴江市</td>
<td>滝川</td>
<td>0.7</td>
</tr>
<tr>
<td>2004</td>
<td>7</td>
<td>18</td>
<td>福井県</td>
<td>鶴江市</td>
<td>間谷川</td>
<td>2.0</td>
</tr>
<tr>
<td>2004</td>
<td>8</td>
<td>17</td>
<td>香川県</td>
<td>三豊郡</td>
<td>落合上川</td>
<td>1.5</td>
</tr>
<tr>
<td>2004</td>
<td>8</td>
<td>18</td>
<td>愛媛県</td>
<td>新居浜市</td>
<td>三杭川</td>
<td>2.0</td>
</tr>
<tr>
<td>2004</td>
<td>10</td>
<td>20</td>
<td>香川県</td>
<td>さぬき市</td>
<td>通谷川</td>
<td>2.0</td>
</tr>
<tr>
<td>2004</td>
<td>10</td>
<td>21</td>
<td>長野県</td>
<td>北安曇郡</td>
<td>滝の沢</td>
<td>1.0</td>
</tr>
</tbody>
</table>

※宮城県内における平均侵食深の例

水沢 0.75 m（昭和61年、宮城県）
秋山沢 1.5 m（平成元年、宮城県）
増田川 1.0 m（平成6年、宮城県）
第2章 計画規模の年超過確率の降雨量によって運搬できる土砂量

計画規模の年超過確率の降雨量によって運搬できる土砂量は、計画規模の年超過確率の降雨量 \(P_p \)（㎜）に流域面積 \(A \)（km\(^2\））を掛けて総水量を求め、これに流動中の土石流濃度 \(C_d \) を乗じて算定する。その際、流出補正率 \(K_f \) を考慮する。

解説

\[
V_{dy2} = \frac{10^3 \cdot P_p \cdot A \cdot C_d}{1 - K_v} \left(\frac{1 - C_d}{1 - C_d} \right) K_f \]

\[C_d: \text{算出法は第II編第4節4.1.1参照} \]

\[P_p: \text{地域の降雨特性、災害特性を検討し決定する。なお一般には、24時間雨量を用いる。} \]

\[K_v: \text{空げき率で0.4程度とする。} \]

\[K_f: \text{流出補正率で図2-2-1によって流域面積に対して与える。なお、} K_f \text{は、0.5を上限とし、0.1を下限とする。} \]

本マニュアルでは、「第I編第3章表3-1-3（1）〜（3）」に示す確率年100年の24時間（1440min）雨量を用いるものとする。

計画規模の土石流によって運搬できる土砂量は、原則として土石流・流木対策の計画基準点で算出する。

図2-2-1 流出補正率

![図2-2-1 流出補正率](image)

\(K_f = 0.05 (log A - 2.0) + 0.05 \)
第3節 計画流木発生量の算出方法

3.1 現況調査法による発生流木量の算出

発生流木量は次式を用いて算出することができる。

\[V_{wy} = \frac{B_d \times L_{dy13} \times \Sigma V_{wy2}}{100} \]

\[V_{wy2} = \pi \cdot H_w \cdot R_w^2 \cdot K_d \times \frac{K_d}{4} \]

ここで、\(V_{wy} \)：発生流木量（m³）、\(B_d \)：土石流発生時に侵食が予想される平均渓床幅（m）、\(L_{dy13} \)：発生流木量を算出する地点から流域の最遠点までの流路に沿って測った距離（m）、\(V_{wy2} \)：単木材積（m³）、\(\Sigma V_{wy2} \)：サンプリング調査100m²あたりの樹木材積（m³/100m²）、\(H_w \)：樹高（m）、\(R_w \)：胸高直径（m）、\(K_d \)：胸高係数である。

解説

土石流発生時に侵食が予想される平均渓床幅（\(B_d \)）、樹高（\(H_w \）、胸高直径（\(R_w \))は、第1章第7節7.1.3の調査結果を用いる。

胸高係数（\(K_d \))は、表2－3－1のとおりである。

図2－3－1 流木発生区間長（\(L_{dy13} \)）のイメージ (砂土計・p41)
表2-3-1 胸高係数表

<table>
<thead>
<tr>
<th>樹高(m)</th>
<th>第一</th>
<th>第二</th>
<th>第三</th>
<th>第一</th>
<th>第二</th>
<th>第三</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.6550</td>
<td>0.6292</td>
<td>0.5917</td>
<td>25</td>
<td>0.5066</td>
<td>0.4874</td>
</tr>
<tr>
<td>6</td>
<td>0.6191</td>
<td>0.6138</td>
<td>0.5664</td>
<td>26</td>
<td>0.5054</td>
<td>0.4859</td>
</tr>
<tr>
<td>7</td>
<td>0.5954</td>
<td>0.5878</td>
<td>0.5379</td>
<td>27</td>
<td>0.5043</td>
<td>0.4846</td>
</tr>
<tr>
<td>8</td>
<td>0.5786</td>
<td>0.5692</td>
<td>0.5138</td>
<td>28</td>
<td>0.5032</td>
<td>0.4833</td>
</tr>
<tr>
<td>9</td>
<td>0.5660</td>
<td>0.5552</td>
<td>0.4931</td>
<td>29</td>
<td>0.5023</td>
<td>0.4822</td>
</tr>
<tr>
<td>10</td>
<td>0.5562</td>
<td>0.5442</td>
<td>0.4738</td>
<td>30</td>
<td>0.5014</td>
<td>0.4811</td>
</tr>
<tr>
<td>11</td>
<td>0.5483</td>
<td>0.5354</td>
<td>0.4531</td>
<td>31</td>
<td>0.5005</td>
<td>0.4801</td>
</tr>
<tr>
<td>12</td>
<td>0.5421</td>
<td>0.5282</td>
<td>0.4342</td>
<td>32</td>
<td>0.4997</td>
<td>0.4791</td>
</tr>
<tr>
<td>13</td>
<td>0.5365</td>
<td>0.5221</td>
<td>0.4166</td>
<td>33</td>
<td>0.4990</td>
<td>0.4782</td>
</tr>
<tr>
<td>14</td>
<td>0.5320</td>
<td>0.5169</td>
<td>0.4002</td>
<td>34</td>
<td>0.4983</td>
<td>0.4773</td>
</tr>
<tr>
<td>15</td>
<td>0.5281</td>
<td>0.5124</td>
<td>0.3846</td>
<td>35</td>
<td>0.4976</td>
<td>0.4765</td>
</tr>
<tr>
<td>16</td>
<td>0.5247</td>
<td>0.5085</td>
<td>0.3696</td>
<td>36</td>
<td>0.4970</td>
<td>0.4758</td>
</tr>
<tr>
<td>17</td>
<td>0.5217</td>
<td>0.5050</td>
<td>0.3553</td>
<td>37</td>
<td>0.4964</td>
<td>0.4750</td>
</tr>
<tr>
<td>18</td>
<td>0.5191</td>
<td>0.5020</td>
<td>0.3414</td>
<td>38</td>
<td>0.4958</td>
<td>0.4743</td>
</tr>
<tr>
<td>19</td>
<td>0.5167</td>
<td>0.4992</td>
<td>0.3280</td>
<td>39</td>
<td>0.4953</td>
<td>0.4737</td>
</tr>
<tr>
<td>20</td>
<td>0.5146</td>
<td>0.4968</td>
<td>0.3151</td>
<td>40</td>
<td>0.4948</td>
<td>0.4731</td>
</tr>
<tr>
<td>21</td>
<td>0.5127</td>
<td>0.4945</td>
<td>0.3026</td>
<td>41</td>
<td>0.4943</td>
<td>0.4725</td>
</tr>
<tr>
<td>22</td>
<td>0.5110</td>
<td>0.4925</td>
<td>0.2904</td>
<td>42</td>
<td>0.4938</td>
<td>0.4720</td>
</tr>
<tr>
<td>23</td>
<td>0.5094</td>
<td>0.4907</td>
<td>0.2785</td>
<td>43</td>
<td>0.4934</td>
<td>0.4714</td>
</tr>
<tr>
<td>24</td>
<td>0.5080</td>
<td>0.4890</td>
<td>0.2668</td>
<td>44</td>
<td>0.4930</td>
<td>0.4708</td>
</tr>
</tbody>
</table>

(備考) 第一 エゾマツ,トドマツ
第二 ヒノキ,サワラ,アスナロ,コウヤマキ
第三 スギ,マツ,モミ,ツガその他の針葉樹および広葉樹

3.2 実績値に基づく発生流木量の算出

近傍に流木発生事例があり,これらの発生流木量に関するデータがある場合は,これから単位流域面積あたりの発生流木量(V_{wy}(m^3/km^2))を求め,次式で発生流木量を求めることができる. (砂土計 p42)

$$V_{wy} = V_{wy1} \times A$$
A: 流域面積(km^2) (渓床勾配が5°以上の部分の流域面積)

解 説

参考として,過去に土石流とともに発生した流木の実態調査結果を図2-3-2に示す.

図は,過去の災害実態調査結果をもとに,渓流の流域面積と針葉・広葉樹林別の流木発生量の関係を示したものである.

なお,実績値に基づく方法は,流域の大部分が針葉樹,広葉樹等の森林により覆われているといった条件の渓流に適用できる. (砂土計 p42)
第Ⅳ編 参考資料 第2章 土石流・流木対策計画における土砂量等の算出方法

図2-3-2 流域面積と流木発生量

（砂土計 p42）
第3章 ダムサイト等の調査

第1節 事前調査

砂防堰堤等の設計にあたっては、事前にダムサイトや堆砂予定地付近の地形・地質の概略を把握しておくなければならない。

解説

事前調査における着目点は、次のような事項が考えられる。
① 計画されたダムサイトが目的とする機能を得る地形であるか
② 現在の渓床を高めることにより、上流堆砂予定地内に新たな水衝部を作る、山脚部を侵食し崩壊を誘発したり、地下水の水位を上昇させ地すべりを誘発させる危険性がないか
③ 計画されたダムサイトが、その付近で最も経済的な工事（付帯工事を含めて）となるような地形であるか
④ 計画されたダムサイトが、十分な地耐力を有する地盤であるか
⑤ 計画されたダムサイト下流部が、砂防堰堤から流下する流水の水勢によって影響がでる地形・地質であるか

等を現地で踏査し、地形測量や地質調査を実施して確認することが必要である。
第２節 砂防堰堤基礎の調査

２．１ 総説

２．１．１ 調査の概要

砂防堰堤を計画する場合は、必ず現地踏査をし、渓床の露岩状況、岩質、地質、地質構造等について調査しなければならない。

解説

砂防堰堤位置において地すべりの発生の危険が予想される場合や、ハイダムを計画する際にはポーリング調査を実施し、岩質、断層、透水性等について調査しなければならない。

砂防堰堤の地質調査の方法と目的を表3-2-1に示す。

また、土石流・流木対策施設としての砂防堰堤（土石流捕捉工）を計画する場合は、必要に応じて渓床の平均的な堆積深さをポーリング調査によって行うことがある。

表3-2-1 砂防堰堤地質調査の方法と目的

<table>
<thead>
<tr>
<th>項目</th>
<th>調査方法</th>
<th>調査項目または目的</th>
<th>調査内容</th>
<th>対応</th>
<th>成果品</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.踏査</td>
<td>堰堤計画の可否判断</td>
<td>岩質及び地質構造断層、破碎帯、風化、断丘、岩質露出状況、層理、クラック、湧水</td>
<td>地質平面図、地層地質横断図</td>
<td>地質平面図、地層地質横断図</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.ポーリング</td>
<td>支持力、不等沈下斜面のすべり面、岩質区分透水性</td>
<td>岩質、硬さ、風化程度、断層、クラック、斜面の粘土層のC、φの調査透水試験、ルヂオンテスト</td>
<td>コンクリートジョイントグラウト基礎の形状抑制けい、PCアンカーアク、ウォール工、排水工、カーテングラウト</td>
<td>ポーリング柱状図、すべり図、透水係数図、ルヂオンマップ</td>
<td>65mm以上深さは堰堤高さの半分以上</td>
<td></td>
</tr>
<tr>
<td>3.弾性波探査</td>
<td>岩質区分</td>
<td>風化、基礎掘削計画断層、破碎帯</td>
<td>コンクリート置換コンタクトグラウトコンソリデーショングラウト</td>
<td>弾性波速度図</td>
<td>ポーリング調査と併用する</td>
<td></td>
</tr>
<tr>
<td>4.電気探査</td>
<td>透水層</td>
<td>地下水位</td>
<td>プラグコンクリート</td>
<td>地下水位図</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.横抗</td>
<td>原位置試験</td>
<td>岩石硬さ、クラック風化、断層破碎帯、湧水漏水、未固結層、岩盤強度試験、ブロックせん断試験</td>
<td>調査横抗展開図</td>
<td>火薬使用によるゆるみ除去の必要あり</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.1.2 ダムサイトの一般的注意事項

実施計画に先立ち、事前に地質構造を把握する。

説明

砂防堰堤が築造されるような地点の地質構造は、例えば、単斜層型、互層型、接触型、段丘型、断層型に分類されるが、堰堤としてはそれぞれ次のような点に注意が必要である。

(1) 単斜層型

ダムサイトにおける谷の流路の方向と地層の層面とが平行するもので、地層が右岸あるいは左岸のいずれかの一方に傾斜するものである。これは、層面、または剥離面よりの漏水に対して考慮を払わなければならないほかに、「流れ盤」に相当する側の谷壁は渓傾斜で、地すべり、または崖面層が厚く、切取り土量が多く、かつ岩盤を掘削した際「層すべり」を起こしやすい点等に特に注意する。

(2) 互層型

いろいろの岩石が互層しているときには、常に岩石の接触面に注意をはらうべきである。特に硬質の岩石と軟質の岩石が互層しているときは一層大切である。これは接触面で軟質の岩石が特に破砕されていることがあり、この接触面を通じて漏水が心配されるからである。なお一見異種の岩石の接触面と見えるところも、実際にには断層による接触であることもあるので特に注意を要する。

(3) 接触型

火成岩が堰堤の基礎をなす母岩を貫いている場合であって、この時には接触変質作用のために両方の岩石の接触面に粘土、あるいは軟質岩盤の存することがある。これらの場合には接触面を通じて漏水の可能性や滑動等について十分検討する。

図 3.2.1 単斜層型

図 3.2.2 互層型

図 3.2.3 接触型
第Ⅳ編 参考資料 第3章 ダムサイト等の調査

(4) 段丘型

段丘には河成のもの、湖成のもの等があるが、いずれも透水性の高いものであるから、その存在個所いかんによっては堰堤建設に支障を来すことがあり、またその堤高がみずから限定され、あるいは特殊加工をしなければならないことがある。段丘は堆積物として、砂礫砂、粘土層より、また地形上平坦面等によって認められる。

段丘型は段丘の部に特殊の工法を要する場合が多く工費、施工の難易により時に不適当となる。

(5) 断層型

ダムサイトに断層が走っているときには、その位置を変更することが望ましい。しかし実際には基礎地盤を掘削してはじめて認められるような場合もあり、また最初から断層の存在が知られていたとしても、各種の条件がすぐれているときには、それらの断層が技術的に処理できるものであるかぎり、そこにあえてえん堤を建設する場合もある。従ってダムサイトにおける断層に対しては、技術的に処理しうるか否かの見通し及び処理方法の研究が最も重要となる。

2.1.3 概 査

概査は、計画の段階における調査で、相当広い範囲にわたって踏査し、堰堤を施工しようとする谷の全般的な地質、成因等について調査することであり、最も適当な基礎岩盤のところを点として選定することが重要である。

解 説

概査の調査範囲は、設計調査に移行し得るか否か判断しうる地質資料が得られる範囲とする。このため概査においては、地質図作成のための地表踏査、空中写真判読、地質踏査を必要に応じて実施する。

概査は、一つの水系に堰堤設計計画が立てられ、既存資料及び地形上の判断から1ないし数箇所の候補地点が選定された場合に、おおよその高さ、型式及び工事の難易を判断し、堰堤工事の可能性あるいは優劣について判断するために必要な地質情報を持つための予備的な調査である。概査の内、一般にハイダム以外の砂防堰堤（堤高15m未満）を施工しようとする場合地表踏査が中心となる。
2.2 設計調査

設計調査は、堰堤の位置、規模、型式などを選定し、設計及び建設に付随する工事に必要な地質情報を求めるための調査・試験であり、その調査範囲堰堤施工のための具体的な設計施工計画を行い得る資料が得られる範囲とする。

設計調査では、基礎地盤内部を直接判定できる調査横杭、ポーリングを主とし、その他得られた情報を集成するために詳細な地質調査を行うものとする。またハイダムの場合基礎岩盤の岩級区分、岩盤の強度、変形係数、弾性係数やルジオンテストによる透水試験を実施するとともに、必要に応じ岩盤試験やグラウチングテストを行う。

調査横杭、ポーリングの箇所、数量、深度などは、堤体の規模、型式、形状などに左右されることが多い。従って、堤高15.0m以上のハイダムと一般の低ダムとでは調査の項目・範囲が当然区別される。

2.2.1 設計調査の範囲

堰堤の高さに応じて、設計調査の範囲を考慮する。

解 説

①ハイダムの場合(H≧15m)

ハイダムの場合、図3-2-6 (a)、(b)に示すように、ダムサイトに関しては、平面的には最終的に決められた堰堤中心線から、下流側は堰堤敷から堤高相当分の長さ、上流側は堤高の長さ、深さは堰堤から堤高の1/2以上がそれぞれ地質条件となるように範囲を設定する。
②一般ダムの場合（H<15m）
一般ダムの場合は、本堤の堤堰及び副堤堰の位置を調査する。堤堰基礎に近接して大規模な地質構造線や異なる岩質の境界（不連続面）が存在すると推定される場合などは、必要に応じてより外側まで調査し、工事や湛水によって発生することが予想される地すべリあるいは崩壊予想箇所、及び仮設備関連箇所についても調査しておく必要がある。

2.2.2 調査の留意点

①重力式砂防堰堤では基礎岩盤の強度、特に剪断強度が小さい岩質がはさまっていないか、剪断度を低下させるような地質構造になっていないか、浸透水による揚圧力が堰堤に大きな影響を与えないか、という点に重点が置かれるべきで、特に河床部の状況に注意を払う必要がある。
②調査横の偏りをなくし、地質調査上の重大な見落としをなくすため調査横坑（一般ダムの場合はあまり行われない）及びポーリングはグリッド方式によって実施することを原則とする。この場合、最初の段階では、調査横坑やポーリングの位置を粗くとばした配置にして、地質状況あるいは設計の必要上、より詳細な地質情報を得たい箇所についてグリッドの間隔を詰めていくいわゆる内挿法を採るべきである。

2.2.3 調査坑
調査坑による調査は、一般にハイダムの場合に行うものとし、調査横坑を掘削して行う。
調査坑の種類や位置、深度などは調査目的、調査段階、地形及び地質条件によって決定する。

解説

図3-2-7 調査横坑とポーリングの配置例
2.2.4 ボーリング調査

地質調査におけるボーリング調査は、原則としてロータリ式によりコアを採取して行う。ボーリング孔の配置や深度は、地質踏査や物理探査の結果を考慮し、調査の目的に応じて決定する。

解説
ボーリングは、原則として図3-2-7に示すように、本堤には河床部（堤体中心）1本、左右両岸山腹部（袖部）に各1本、垂直壁（副堰堤）は河床部（堤体中心）に1本程度の配置を標準とし、河床幅、堤長、袖部の形状などによって増減する。堤長の長い堰堤にあっては30mに1箇所程度とする。
ボーリング調査の深さは堤高の半分程度を目安とする。ただしハイダムの場合は堤高程度とする。ハイダムの場合、ボーリングを実施する際、岩盤部で原則としてパイピング検討のためのルジオンテストを行う。

2.2.5 岩級区分

設計調査においては基礎岩盤の岩級区分を行う。

解説
岩級区分は、岩片の硬軟、風化の程度、割れ目の頻度、割れ目の状態及び在物の種類にもとづいて岩盤を分類し、その良否を評価するものであり、前述の概査、設計調査結果及び掘削岩盤面の状況をもとに、基礎岩盤としての適否、特殊調査や、基礎処理の必要性の判断基準とする。
岩級区分の例を表3-2-2に示す。

表3-2-2 （1）岩級区分の例

<table>
<thead>
<tr>
<th>記号</th>
<th>特徴</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>極めて新鮮な岩石で造岩鉱物は風化変質を受けていない。節理はほとんどなく、あっても密着している。色は岩石によって異なるが、岩質は極硬岩で堅硬である。</td>
<td>硬岩</td>
</tr>
<tr>
<td>B</td>
<td>造岩鉱物中、雲母、長石類及びその他の有色鉱物の一部は風化して多少褐色を呈する。節理はあるが密着していて、その間に褐色の泥または粘土を含まないもの。</td>
<td>中硬岩</td>
</tr>
<tr>
<td>C</td>
<td>CM 堅硬度、新鮮度はBとCMの中間のもの。</td>
<td>軟岩（II）</td>
</tr>
<tr>
<td></td>
<td>Cm かなり風化し、節理と節理に囲まれた岩塊の内部は比較的新鮮であっても、表面は褐色または暗緑色に風化し、造岩鉱物も石英を除き、長石類その他の有色鉱物は赤褐色を帯びる。節理の間には泥または粘土を含んでいるが、あるいは多少の空隙を有し水滴が落下する。岩塊自体には硬い場合もある。</td>
<td>軟岩（I）</td>
</tr>
<tr>
<td></td>
<td>Cl CMより風化の程度のははらだしいもの。</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>著しく風化し全体としても褐色を呈し、ハンマーでたたけば容易に崩れる。更に風化したものでは岩石は砂状に破壊されれて、一部土壌化している。節理はむしろ不明瞭であるが時には、岩塊の性質は堅硬であっても、堅岩と堅岩の間に大きな開口節理の発達するものも含まれる。</td>
<td></td>
</tr>
</tbody>
</table>
第Ⅳ編 参考資料 第3章 ダムサイト等の調査

表3-2-2 （2）岩級区分の細部判断要素

<table>
<thead>
<tr>
<th>区分要素</th>
<th>現象</th>
</tr>
</thead>
<tbody>
<tr>
<td>堅硬度</td>
<td>ハンマーで火花が出る程度</td>
</tr>
<tr>
<td></td>
<td>ハンマーで強打して1回で割れる程度</td>
</tr>
<tr>
<td></td>
<td>ハンマーで崩せる程度</td>
</tr>
<tr>
<td></td>
<td>class</td>
</tr>
<tr>
<td></td>
<td>A 、B</td>
</tr>
<tr>
<td></td>
<td>B 、C_H 、C_M</td>
</tr>
<tr>
<td></td>
<td>C_M 、C_L 、D</td>
</tr>
<tr>
<td>割れ目の間隔</td>
<td>50cm以上</td>
</tr>
<tr>
<td></td>
<td>50～15cm</td>
</tr>
<tr>
<td></td>
<td>15cm以下</td>
</tr>
<tr>
<td></td>
<td>class</td>
</tr>
<tr>
<td></td>
<td>A 、B</td>
</tr>
<tr>
<td></td>
<td>C_H 、C_M 、C_L</td>
</tr>
<tr>
<td></td>
<td>C_M 、C_L 、D</td>
</tr>
<tr>
<td>割れ目の状態</td>
<td>密着し割れ目に沿って風化の跡がみられない</td>
</tr>
<tr>
<td></td>
<td>密着、割れ目に沿って多少風化変質し、その面に薄い粘土物質が付着する。</td>
</tr>
<tr>
<td></td>
<td>小さな（2mm程度）空隙を有する割れ目も発達しているか、あるいは割れ目に沿ってかなりの幅をもって風化変質し、割れ目には粘土物質を介在する。</td>
</tr>
<tr>
<td></td>
<td>class</td>
</tr>
<tr>
<td></td>
<td>A 、B</td>
</tr>
<tr>
<td></td>
<td>C_M 、C_L</td>
</tr>
<tr>
<td></td>
<td>C_L 、D</td>
</tr>
</tbody>
</table>

2.2.6 室内試験

設計調査においては岩石の室内試験を行う

説明

サンプリングを行う場合には、サンプルができる限り岩盤の性質を代表するよう偏りのないサンプリングを行うように注意する。

①室内試験の種類

基礎岩盤の強度や変形特性の目安を得るためには通常一軸圧縮試験が行われるが、軟岩の場合は三軸圧縮試験を行うことがある。

また、亀裂係数を求めるには岩片の弾性波伝播速度（超音波速度測定法による）を測定する。

更に粘土の検定にはX線回析による試験が一般的で、電子顕微鏡による判定、示差熱分析が行われることがある。

岩石の力学的性質を求める場合は、岩石供試体により、求める性質に応じて原則として、表3-2-3に示す方法により試験を行う。

表3-2-3 岩石の力学的性質を求めるための試験方法

<table>
<thead>
<tr>
<th>求める性質</th>
<th>試験方法</th>
<th>試験方法の規格</th>
</tr>
</thead>
<tbody>
<tr>
<td>せん断強さ</td>
<td>一軸圧縮試験</td>
<td>KDK S 0502</td>
</tr>
<tr>
<td></td>
<td>三軸圧縮試験</td>
<td>KDK 岩石の三軸圧縮試験方法</td>
</tr>
<tr>
<td></td>
<td>直接せん断試験</td>
<td>KDK 岩石の直接せん断試験方法</td>
</tr>
<tr>
<td>引張強さ</td>
<td>引張試験</td>
<td>KDK 引張試験方法</td>
</tr>
</tbody>
</table>

IV-3-8
2.2.7 原位置試験・変形試験

砂防堰堤の設計値を決めるためには、比較的単純な地質構造である場合を除き、岩盤の原位置試験を行ってその計測値を参考にする。試験箇所は、岩級区分に基づいて選考し、同一の岩級区分とされた箇所の計測値で岩盤の力学的性質を判断する。

解説

強度試験としては、通常ブロック剪断試験が行われるが、場合によってはロック剪断試験が行われる。この場合、試験箇所の清掃後に改めて岩級区分を行い、再評価したうえで試験を行うようにする。特に、区分の要素（例えば割れ目の頻度）の共通性に注意する。

2.2.8 透水性試験及びルジオンテスト

基礎岩盤の透水性は、砂防堰堤に最も重大な関係を持つものの一つであるので、事前に十分把握し、パイピングの恐れがあればその対策を講じておかなければならない。

解説

ポーリングを実施した場合には、ルジオンテストを行い、各ステップごと（5m とすることが多い）のルジオン値を求めることを望む。ルジオンテストにおいては、圧力と透水量の関係図（P〜Qカーブと呼ばれる）によって透水性を判断し、軟質岩盤の場合は特に注意を払う必要がある。給水圧を上げ過ぎると岩の組織を破壊して真の透水性を求め得ない。またニアサンプリングの目的で無水掘ボーリングを行った場合は、孔壁に泥壁が形成されるので難透水性になり、この場合も真の透水性を求め得ない。軟岩では、地質を知るためのコアポーリングと透水試験用ポーリングを区別して実施する必要がある。また、ルジオンテストを実施する際には地下水位を計測し、地下水面下では地下水の影響を差し引いてルジオン値を判断するべきである。

2.2.9 総合解析

設計調査が終了した段階では、実施したすべての地質調査及び試験の成果を整理し、得られた地質情報について総合解析を行って、設計、施工、維持管理に対して基本資料となるべき報告書を作成する。

解説

砂防堰堤の設計のために行われる種々の地質調査及び試験は、それぞれの方法の相違によって、地質情報の性質が異なっている。そこで、それらを相互に関連づけて、地質条件の最終結論をまとめる。総合解析において特に必要な事項で、落としてはならないものに次のようなものがある。また、更に検討の余地のある問題点についても明記する必要がある。

① 岩盤評価
② 堰堤の安定上問題になる弱層
③ 岩盤線
④ ルジオンマップ

グリッド方式によって、偏りが少ないように調査横坑、ポーリングが設置されて、必要な範囲の基礎岩盤の調査がなされれば、岩級区分を実施し、それに基づいて、原位置岩盤試験（強度、変形性）がなされる。地形、断層破砕帯及び風化などの影響を考慮しながら、地質学的判断に基づいている工学的性
質をもっと評価された岩盤の分布を推定する。この一連の過程の結果が堰堤基礎岩盤の岩盤評価である。記録表現は、各グリッドによる1/500水平断面図に表示すると設計との関連が最もつけやすい。

堰堤設計をするために重要な点は、全体の岩盤評価と堰堤の安定上重要な問題となる弱層である。このことについては設計専門家と十分に協議して把握しておかなければならない。この弱層の例として堰堤基礎面あるいは下流直下に存在する大断層（特に緩い角度で下流上がりの断層はコンクリート堰堤にとっては最もすべきやすい弱層になる。）ブロック幅の1/3以上であることと処理が困難で特殊な基礎処理工を見ることとして、ブロック幅に近くなると安全性に疑問が生じてくる。）水平あるいは低角度で岩盤に存在する厚さ1m以上の未固結層、風化部あるいは破砕部、砂利ののような非常に透水性の高い地層、火山灰あるいは軽石層のような透水性があり、固結度の高い雪層の厚さの高いシート群、及び剥離性の強い片理・節理の集中などがあり、このほか、ダムサイトによって異なる種々の例がある。また、これ等の例は堰堤型式及び規模とも関連するので、この点についても設計専門家の意見を十分に用いるべきである。

ルジオンマップは、ルジオンテストによって各ポーリングの各ステージごとに計測されたルジオン値を基にして、地質構造と岩質を考慮したうえで作成された透水度の一覧のコンピュータマップである。一般に堰堤軸に含む横断図、あるいはカーテングラウト予定断面図に2次元的に表示する。このルジオンマップは基礎岩盤の遮水性を推定し、あるいはグラウト計画を立てるための基礎資料となるものであるから、作成して検討を加えることが望ましい。グラウトの施工中あるいは施工後においてもルジオンテストがなされれば新しいルジオンマップを作成して遮水性の向上結果を認定する必要がある（グラウチング前後のルジオンテストに関しては、土木学会編・ダム基礎岩盤グラウチングの施工指針を参照）。ルジオンマップの例を図3-2-7に示す。

図3-2-7 基礎岩盤のルジオンマップ
2.3 基礎処理の実施

ダムサイトの選定にあたっては、基本的に基礎処理を必要としない位置を選定しなければならない。やむを得ず弱部が存在する地点に砂防堰堤を計画しなければならない場合は、基礎の弱点部に対して基礎処理を行わなければならない。

解説

砂防堰堤のダムサイトに選定にあたっては地質、岩質等について配慮的に比較的、楽観的に扱われてきたが、最近の砂防堰堤の大型化に対し、高さ15m以上の砂防堰堤については、51年10月に制定された「河川管理施設等構造令」に準拠することとした。またこのような方向を受けて、1961年に新たに改訂された「河川砂防技術基準（案）」計画編の砂防設備計画に「ダムの高さの決定に際しては、基礎の地質を十分に調査しなければならない。特に堰堤の高さが15m以上となる場合には、岩盤調査を併せて実施しなければならない。ここでいう岩盤調査とは、地質の良否、支持力、透水性、断層の有無、走向方向などに関する調査をいう。プローディングダムは高さ15m以下であることを原則とする。」と明記されており、また基礎として「ダムの基礎は、所要の支持力並びに剪断摩擦抵抗力を有し、浸透水等により破壊しないようになければならない。ダムの基礎は、必要に応じ、カットオフ、遮水壁等により補強するものとする。」と記されている。

基本的には基礎処理を出来るだけ必要としないダムサイトを選定することはもちろんであるが、砂防堰堤としての性格から、軟弱地盤や堆積土砂の大きいところ、あるいは地すべり等においてやむをえず砂防堰堤を計画しなければならない場合もあり、これらの弱点に対する処理方法等を整備すると表3-2-4のようになる。

表3-2-4 主な基礎処理方法

<table>
<thead>
<tr>
<th>現場条件</th>
<th>主な処理方法</th>
<th>その他</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.断層、破砕帯、シーム等
岩盤劣化部分があるとき</td>
<td>グラウト工法、コンクリート置換工法
ロックボルト工法等</td>
<td></td>
</tr>
<tr>
<td>2.軟弱地盤や堆積土砂が大きいとき</td>
<td>杭基礎工法、置換工法、
ケーソン基礎工法、薬液注入工法等</td>
<td>ダム型式（アース、ロックフィル）
やダム断面形状の検討もある。</td>
</tr>
<tr>
<td>3.地すべり地のとき</td>
<td>杭打撃工法、深基礎工法等</td>
<td>ダム型式（スターリングダム枠ダム）の検討もある。</td>
</tr>
<tr>
<td>4.浸透水の処理を必要とするとき</td>
<td>グラウト工法、遮水壁工法、
フェイシング工法等</td>
<td></td>
</tr>
</tbody>
</table>
第3節 水質調査

堰堤材料を検討するため、流水のpH試験を実施する。

解説
鋼製砂防堰堤は、酸性の影響により腐食速度が大きくなることが知られている。pH5.0未満の酸性河川では、鋼製構造物の採用は好ましくないとされている。
第4章 水系砂防計画

第1節 総説

水系砂防計画は、水系を対象に土砂生産域である山地の山腹、渓流から河川までの有害な土砂移動を制御し、土砂災害を防止・軽減することによって、河川の治水上、利水上の機能の確保と、環境の保全を図ることを目的として策定するものとする。

水系砂防計画では、計画土砂量等に基づき、有害な土砂を合理的かつ効果的に処理するための土砂処理計画を策定するものとする。

また、土砂移動に関する問題が顕在化している水系等においては、総合的な土砂管理の推進に配慮し計画を策定するものとする。

第2節 計画規模

水系砂防計画における計画規模は、水系ごとに既往の災害、計画区域等の重要度・事業効果等を総合的に考慮して定めるものとし、一般的には対象降雨の降雨量の年超過確率で評価して定めるものとする。

第3節 計画基準点

計画基準点は、砂防基本計画で扱う土砂量等を決定する地点である。

計画基準点は、水系砂防計画で対象としている計画区域の最下流地点または河川計画との関連地点、保全対象の上流地点、土砂の生産が見込まれる地域の最下流地点などに設けるものとする。

なお、土砂の移動形態が変わる地点、支川内の保全対象の上流地点、本川と支川との合流点等の土砂移動の状況を把握する必要がある場合には、補助基準点を設けるものとする。

解説

水系砂防計画の対象を明確にするため、また、水系砂防計画の計画区域全体における土砂処理計画との整合を図るため、計画基準点は地域の特性が十分表現できるような地点に設ける。

補助基準点は必要に応じ複数の地点に設定する。
防事業対象区域)の最下流地点に設ける基準点である。本マニュアルでは、この地点を「計画基準点（水）」と呼ぶ。「計画基準点(水)」において、第4章第5節5.1の式(1)を用いて土砂収支計算を行う。

この計画基準点は砂防原点とも呼ばれるものであり、河川管理者と協議して決定されるものであるが、一般的に次の事項を目安に決定されている。

・河床勾配がおおむね1/100の地点
 河床勾配が1/100より緩勾配であっても土砂害が多発している場合、または天井川となっている場合は、計画基準点を河床勾配1/100以下に設けることもある。

・法河川との関連地点

・大きな河川との合流点

なお、法河川に砂防事業の対象となる渓流が隣接して流入している場合等では、これら対象渓流群の最下流を目安として設けられる場合もある。この場合、計画基準点は、中小渓流を含めて下流河川領域の保全のために設ける水系上の根幹的なコントロールポイントとして設けられるものである。

2 水系砂防計画での補助基準点

水系砂防計画での補助基準点は、対象地域内での流出土砂の土砂収支のチェック、保全対象の明確化を目的として設ける。補助基準点は、次のような事項に着目して設定する。

なお、補助基準点では第4章第5節5.1の式(1)で示されている複利計算での土砂収支は行わない。

(1) 土石流区間と掃流区間の境界点(補基(掃))

土石流区間とは、土砂の流出が集合運搬の状態で行われる区間をいい、掃流区間とは土砂の流出が流水による個別運搬の状態で行われる区間をいう。境界については第4章第4節4.1を参照されたい。

(2) 保全対象地区の上流

砂防計画上の保全対象の保全を考えて、土砂量をチェックする地点である。なお、下流に渓流保全工を計画する場合、渓流保全工上流端はこれに該当する補助基準点である。

本マニュアルでは、この地点を「補基(保)」と呼ぶ。

(3) 主な支川合流点

計画基準点(水)のある本川への合流点等、土砂収支上の節目と考えられる地点に設ける補助基準点であり、本マニュアルでは、この地点を「補基(合)」と呼ぶ。

計画基準点(水)のある河川を本川と考え、本川合流点が設定の目安となる。なお、法河川に砂防事業の対象となる渓流が隣接して流入している場合では、法河川との合流点に「補基(合)」を設けることとなる。
第Ⅳ編 参考資料 第4章 水系砂防計画

図4-3-1 水系砂防での計画基準点設定の模式図（計画基準点（水）、補基（合））

図4-3-2 水系砂防での補助基準点設定の模式図（補基（合）、補基（掃）、補基（保））
第4節 計画土砂量等

4.1 計画土砂量、土砂移動の形態

水系砂防計画における土砂処理計画を策定するために必要な計画土砂量として、計画生産土砂量、計画流出土砂量、計画許容流出土砂量を定めるものとする。（国河計 p50）

一般に土砂移動の形態は、掃流、土石流に分類され、それぞれの特性に応じて土砂量を算出する。

解説

渓流での土砂移動の形態は、渓床勾配、渓床幅、流域面積、粒径等の様々な因子を反映したものであり、渓流調査等を参考に総合的に判断することが基本であるが、一般的には渓床勾配1/30（≒2°）付近が掃流区間と土石流区間の境界と考えられている。

図4-4-1 土砂移動形態の渓床勾配による目安

（砂土計 p9）
第Ⅳ編 参考資料 第4章 水系砂防計画

4.2 計画生産土砂量

計画生産土砂量とは、新規崩壊土砂量、既崩壊拡大見込み土砂量、既崩壊残存土砂量、及び河床堆積物の二次侵食による土砂量のうち崩壊等の発生する時点で河道に流出する土砂量をいう。

計画生産土砂量は、砂防基本計画の対象となる計画超過土砂量算定の基礎となる土砂量で、計画対象区域の現況調査資料、既往の災害資料、類似地域の資料等をもとに定める。 (建河計 p48)

解説

土石流区間における計画生産土砂量は、土石流・流木対策計画における移動可能土砂量を準用する。

土石流区間については、その河状の特性を考慮して渓流調査を行い、移動可能渓床堆積土砂量に準じた方法で計画生産土砂量を算出する。

生産土砂量の原因となるものには次のものがある。

①山腹及び渓岸の新規崩壊土砂量
②既崩壊拡大見込土砂量
③既崩壊残存土砂量
④河床堆積物の二次侵食による土砂量

生産土砂量は計画基準点ごとに、その上流流域を対象として土砂の生産形態別に流域内に生産土砂抑制施設がない状態で算出する。流域内の状況に著しい変化が生じた場合には、必要に応じ改訂する

①山腹及び渓岸の新規崩壊土砂量 ②既崩壊拡大見込土砂量

③既崩壊残存土砂量 ④河床堆積物の二次侵食による土砂量

図4-4-2 生産土砂量

＜参考＞崩壊土砂の算出方法

山腹及び渓岸の新規崩壊土砂量

新規崩壊土砂量を算出する方法は、①地質別の崩壊面積率及び平均崩壊深を用いる方法、②降雨量から崩壊面積を予測する方法に別れる。
（1）地質別の崩壊面積率及び平均崩壊深を用いる方法
表 4-4-1, 4-4-2 より地質別新規崩壊面積、新規崩壊深を求め新規崩壊土砂量を計算する。
(新規崩壊土砂量)=(新規崩壊面積)×(新規崩壊深)

(2) 降雨量と崩壊面積を予測する方法
① 林業試験場による新規崩壊面積及び土砂量の推定
新規崩壊土砂量(\(V_3\))は
\[V_3 = (A - A_1) \times h_1 \times r \]
\[r = \frac{A_1}{A} \times (P - 1) \]
ここに、\(V_3\) ： 新規崩壊土砂量
\(A\) ： 流域面積（m²）
\(A_1\) ： 現況崩壊面積（m²）
\(A_1/A\) ： 荒廃率
\(h_1\) ： 崩壊深（m）<地調結果を利用する>
\(P\) ： 雨量比、100 年確率日雨量/モード値
\(\gamma\) ： 新規崩壊面積率

表 4-4-1 地質別新規崩壊率（流域面積 100km²以下でほとんどは 10〜30 km²の値）

<table>
<thead>
<tr>
<th>地質</th>
<th>100km²以下(崩壊面積)</th>
<th>10〜30 km²(崩壊面積)</th>
</tr>
</thead>
<tbody>
<tr>
<td>た い 京 畑</td>
<td>0.30 %</td>
<td>0.22 %</td>
</tr>
<tr>
<td>火 山 伎 姿</td>
<td>0.06 %</td>
<td>0.19 %</td>
</tr>
<tr>
<td>熱 温 塩 岩</td>
<td>0.04 %</td>
<td>0.33 %</td>
</tr>
<tr>
<td>百 寐 沙 岩</td>
<td>0.10 %</td>
<td>0.45 %</td>
</tr>
<tr>
<td>焼 藻</td>
<td>1.08 %</td>
<td>0.45 %</td>
</tr>
<tr>
<td>塩 崩 取</td>
<td>0.46 %</td>
<td>0.90 %</td>
</tr>
<tr>
<td>火 山 岩 岩</td>
<td>0.26 %</td>
<td>0.21 %</td>
</tr>
<tr>
<td>会 資 砂 岩</td>
<td>0.23 %</td>
<td>0.21 %</td>
</tr>
<tr>
<td>安 規 山 岩</td>
<td>0.22 %</td>
<td>0.07 %</td>
</tr>
<tr>
<td>重 島 岩 岩</td>
<td>0.29 %</td>
<td>0.24 %</td>
</tr>
<tr>
<td>金 山 岩</td>
<td>0.11 %</td>
<td>0.24 %</td>
</tr>
<tr>
<td>砂 岩 評 岩</td>
<td>0.13 %</td>
<td>0.07 %</td>
</tr>
<tr>
<td>重 岩 岩 岩</td>
<td>0.34 %</td>
<td>0.14 %</td>
</tr>
<tr>
<td>砂 岩 岩 岩</td>
<td>0.07</td>
<td>0.00 %</td>
</tr>
<tr>
<td>た い 京 畑</td>
<td>0.50 %</td>
<td>0.28 %</td>
</tr>
<tr>
<td>煙 岩 岩</td>
<td>0.05 %</td>
<td>0.27 %</td>
</tr>
<tr>
<td>会 資 砂 岩</td>
<td>0.25 %</td>
<td>0.01 %</td>
</tr>
<tr>
<td>重 岩 岩 岩</td>
<td>0.19 %</td>
<td>0.10 %</td>
</tr>
<tr>
<td>砂 岩 岩 岩</td>
<td>0.04 %</td>
<td>0.07 %</td>
</tr>
</tbody>
</table>

（注）1 つの流域で地質がいくつかもっている場合には、地質の面積率で新規崩壊率を除して、各地質別を合計し流域としての新規崩壊率とする。

第Ⅳ編 参考資料 第 4 章 水系砂防計画
一般的には3%を超えるような新規崩壊の発生する例は少ないが、昭和34年8月の豪雨による天竜川流域の崩壊では、全流域で6.9%、2次オーダーの谷では7.9%の崩壊率になった。また、支川の四徳川では流域として11.1%、2次オーダーの谷における崩壊率は12.0%となった。

表4-4-1 地質別平均崩壊率（ポケットブックより）

<table>
<thead>
<tr>
<th>地質</th>
<th>崩壊率（%）</th>
<th>地質</th>
<th>崩壊率（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>火山岩</td>
<td>2〜3</td>
<td>火山碎状土</td>
<td>1〜2</td>
</tr>
<tr>
<td>砂岩</td>
<td>2〜3</td>
<td>砂岩</td>
<td>2〜3</td>
</tr>
<tr>
<td>岩灰岩</td>
<td>3〜4</td>
<td>岩灰岩</td>
<td>2〜3</td>
</tr>
<tr>
<td>岩灰岩</td>
<td>5</td>
<td>岩灰岩</td>
<td>5</td>
</tr>
<tr>
<td>砂岩</td>
<td>2〜3</td>
<td>砂岩</td>
<td>1〜2</td>
</tr>
<tr>
<td>砂岩</td>
<td>5</td>
<td>砂岩</td>
<td>2〜3</td>
</tr>
<tr>
<td>砂岩</td>
<td>3〜4</td>
<td>砂岩</td>
<td>1〜2</td>
</tr>
<tr>
<td>砂岩</td>
<td>3〜4</td>
<td>砂岩</td>
<td>2〜3</td>
</tr>
<tr>
<td>岩灰岩</td>
<td>2〜3</td>
<td>岩灰岩</td>
<td>2〜3</td>
</tr>
<tr>
<td>岩灰岩</td>
<td>1〜2</td>
<td>岩灰岩</td>
<td>2〜3</td>
</tr>
<tr>
<td>岩灰岩</td>
<td>1〜2</td>
<td>岩灰岩</td>
<td>1〜2</td>
</tr>
</tbody>
</table>

②打萩の推定式
打萩は、村野解析法(山地崩壊に関する2.3の考察、豪雨山崩れの研究等)を天竜川上流域、釜無川流域、木津川流域、有田川流域に適用し、累加雨量P（mm）と崩壊面積率S/A（%）との間には図4-4-3のような二次曲線で近似できる関係が存在し、次式で表すことを提案している。

\[
S/A = 10^{-6}K(P-P_0)^2
\]

\[
V_s = K \cdot A \cdot h (P-P_0)^2
\]

ここで、S : 崩壊面積（k㎡）
A : 流域面積（k㎡）
K : 係数
P : 累加雨量（mm）
P_0 : 崩壊無効雨量（mm）
h : 崩壊深（m）
V_s : 崩壊土砂量（m³）
4.3 河道調節量

河道には、勾配、川巾、湾曲、河道延長等により洪水時の流下土砂を一時河道内に貯留し、その後の流水により土砂を徐々に下流に流下させる機能がある。この一時貯留される土砂量が河道調節量であり、河道形状を考慮して定める。

（建河計 p 48）

解説

土石流区域では、(移動可能土砂量) > (運搬可能土砂量)となる場合に、河道調節量が発生し、
(河道調節量) = (生産土砂量) − (運搬可能土砂量)となる。
掃流区間では、(移動可能土砂量) > (運搬可能土砂量)となる場合に発生し、
(河道調節率) = (生産土砂量) − (運搬可能土砂量)となる
また、河道調節量を生産土砂量との百分率 (河道調節率) で表す場合は、
(河道調節率) = (生産土砂量) − (河道調節率) × 100 となる。

注) 土石流区域と掃流区間では名称が異なるが、(移動可能土砂量)と(生産可能土砂量)は同じ意味である。
（イ）勾配の変化点に留まる

（ロ）川が狭くなる上流に留まる

（ハ）湾曲部に溜まる

図 4-4-3 河道調節の例

＜参考> 掃流区域（土砂流含む）における運搬可能土砂量算出方法

掃流区域（土砂流含む）における運搬可能土砂量の算定には、下記に示す芦田・奥村式等を参考として算出する。

芦田・奥村は、土砂流出量は主としてストリーム・パワーに規定されるとして、わが国の代表的な土砂流出に関する資料から次式を求めた。

\[D = K' \left(AR_d I_{200} \right)^2 \]

ここに、
- \(D \): 豪雨時流出土砂量 (m³)
- \(A \): 流域面積 (km²)
- \(R_a \): 最大日雨量 (mm)
- \(I_{200} \): 対象地点から標高差 200m の区間の河床勾配
- \(K' \): 定数

その結果は、図 4-4-4 に示される。図において、\(H \) は年平均比流出土砂量が 1000m³/km²/year 以上の流域を、\(F \) は花崗岩の風化域を示している。
この図より、平均的には \(K' = 10 \) とするとことができる。

![図 4-4-4 豪雨時の流出土砂量と土砂輸送能力との関係](image)

4.4 最大洪水流砂量（計画流出土砂量）

最大洪水流砂量（計画流出土砂量）とは、計画生産土砂量のうち、土石流または流水の掃流力等により運搬されて計画基準点に流出する土砂量であって、既往の土砂流出、流域の地形、植生の状況、河道の調節能力等を考慮して定める。

（建河計 p48）

解説

掃流区域では、当該計画基準点の直上流の基準点（複数の場合もある）における洪水時の計画・流出土砂量に、両計画基準点間の流域の生産土砂量からその間の河道調節量を差し引いた量を加算して定めるものとする。

なお、比流出土砂量の参考値は河川・砂防技術基準（案）計画編 P49 参照。

4.5 計画許容流砂量

計画許容流砂量は、計画基準点から下流河川等に対して無害かつ必要な土砂として流送すべき量であり、流水の掃流力、流出土砂の粒径等を考慮して、河道の現況およびその計画に基づいて定めるものとする。

掃流区域で計画基準点が複数ある場合は、計画許容流砂量は上下流間において整合のとれたものとする必要はない。

（建河計 p49）

解説

許容流砂量には、計画流出土砂量の種類により次の 2 種類がある。

① 最大洪水流砂量を流出土砂量とする場合 → 洪水時許容流砂量

② 年平均流砂量を流出土砂量とする場合 → 年平均許容流
一般には、計画流出土砂量の5～10％としているが、許容流砂量決定には、流砂量公式により求める場合もある。これは、洪水流量と流出土砂量の関係が明確な場合、ある程度精度のあるものを求めることができる。

・掃流砂量式

掃流砂の運動は移動と休止の連続であって、その過程はきわめて確率的である。アインシュタインという研究者が流砂の流送過程に内在する確率的特性を検討して、著名な掃流砂関数を提案したのは周知のとおりである。その後、砂礫の確率的な運動特性に関して詳細な研究が進められ、多くの知見が積み重なりつつある。これに基づいた掃流砂量式がいくつか提案されている。一方、平均的な掃流砂量式を表すためには、必ずしも砂礫の運動特性から論議する必要はなく、適当な流砂モデルによる解析も行われている。移動床では、ほとんどの場合河床波が形成されるが、こうした場合の砂礫の運動特性は完全に記述して流砂量式を組み立てることを含んでいる。しかも、流砂量に及ぼす河床波の影響は非常に大きい。したがって、流砂モデルによる解析は有力な手法となっている。

アインシュタインは早くから流砂に及ぼす河床粗度の影響に目を向け、河床波が形成されたときのせん断力は、砂礫の運動特性を完全に記述して流砂量式を組み立てることを含んでいる。しかし、流砂量に及ぼす河床波の影響は非常に大きい。したがって、流砂モデルによる解析は有力な手法となっている。

アインシュタインの掃流砂関数は、式(1.2.1)で与えられる有効摩擦速度を用いて記述されている。メイヤーピーター・ミューラーも多くの実験結果から、流砂に有効に作用する摩擦速度を用いた流砂量式、

\[\phi = 8 \left(\frac{\tau_e}{0.047} \right)^{3/2} \]

(1.2.8)

を提案した。ここに、

\[\tau_e = \frac{u^2}{(\sigma/\rho - 1)gd} \]

に、砂粒抵抗を表すストリックラー型の粗度係数

\[n_e : \text{流砂全般的粗度係数} \]

\[q_e : \text{単位幅当たりの流砂量} \]

\[d : \text{粒径} \]

\[u^* : \text{摩擦速度} \]

次元解析的手法によって誘導された篠原・椿の式は、

\[\phi = 25 \left(\sigma/\rho - 1 \right)^{3} \frac{u^2}{(\sigma/\rho - 1)gd} \]

(1.2.9)

ここに、

\[\phi' = u/u^* \]

\[\tau^* = 6.0 + 5.75 \log_{10}(R/d_{65}) \]

\[\tau^* = u^2/((\sigma/\rho - 1)gd) \]

\[u^* : \text{砂礫の移動限界摩擦速度} \]

\[R : \text{徑深} \]
である。上式では、有効挙流力として、ここに示すような砂粒抵抗では過小な値を取りすぎると考え、U*を全抵抗と砂粒抵抗の幾何平均で与えることを提案して、流砂量式を導いている点が特徴となっている。

佐藤・吉川・芦田らによって、提案された次式も河床粗度によって流砂量が大きく変化することを示している。

\[
\phi = \phi F(\tau_o / \tau_c)^{3/2} \ldots \ldots \ldots \ldots \ldots \ldots . (1.2.10)
\]
ここに、\(F(\tau_o / \tau_c) \)は\(\tau_o / \tau_c \)の関数

\[
\tau_o = \rho u_*^2 \\
\tau_c = \rho u_{c*}^2 \\
\tau_* = u_*^2 / (\sigma/\rho - 1) gd
\]

\(\phi \):\(n \geq 0.025; \phi = 0.62, n \leq 0.025; \phi = 0.62(40n)^{-3.5} \)の値が実験値から求められている。

バグノルド(Bagnold)は粒子を含む流れの研究から、次の仮説が成立することを実験的に検証した。

i) 全せん断応力\(\tau_o \)は粒子の衝突によって生じるせん断応力\(\tau_c \)と流体自身のせん断応力\(\tau_F \)との和として、

\[
\tau_o = \tau_c + \tau_F
\]

として表される。

ii) 流体中の粒子の衝突によって鉛直応力\(\sigma G \)が生じ、\(\tau F \)と\(\sigma G \)の間には、

\[
\tau_c = \sigma G \cdot \mu_f
\]

が成立する。ここに、\(\mu_f \)：粒子の動摩擦係数である。

芦田・道上はバグノルドの考え方に基づいて、次のような掃流砂量式を導いた。

\[
\phi = 17 \tau_{*o}^{3/2} \cdot 1 - \frac{\tau_{*c}}{\tau_*} \cdot 1 - \frac{u_{c*}}{u_*} \quad \ldots \ldots \ldots \ldots \ldots \ldots . (1.2.11)
\]

ここに、\(\tau_* \)を算定するための有効摩擦速度\(\mu_*$は、次式で与えられる。

\[
\frac{u}{u_{c*}} = 6.07 + 5.75 \log_{10} \frac{R}{d(1+2\tau_*)} \quad \ldots \ldots \ldots \ldots \ldots \ldots . (1.2.12)
\]

混合砂礫床においては、粒径別の移動限界の相違によって、河床砂礫の一部が移動しないような条件のものではアーマリング現象が生じる。このような条件のもとでは粒径別に流砂量を算定することが必要である。芦田・道上は限界掃流力を同様の式に適用して各粒径ごとの流砂量を次式で表した。

\[
q_{Bi} = 17 \tau_{*o}^{3/2} \cdot 1 - \frac{\tau_{*c_i}}{\tau_{*i}} \cdot 1 - \frac{u_{c_i}}{u_i} \quad \ldots \ldots \ldots \ldots \ldots \ldots . (1.2.13)
\]

ここに、\(q_{Bi} \)：粒径\(d_i \)の砂礫の流砂量。

\[
q_{Bi} = (d_i) u_{c*} u_{i*} d_i
\]

が河床において占める割合

\[
\tau_{*o} = u_{o*}^2 / (\sigma/\rho - 1) gd_i \\
\tau_{*i} = u_{i*}^2 / (\sigma/\rho - 1) gd_i \\
\tau_{*c_i} = u_{c*}^2 / (\sigma/\rho - 1) gd_i
\]

である。芦田・道上は式(1.2.13)を用いて、アーマリングを伴う堰堤下流部の河床変動を解析して良好な結果を得ている。
その後、芦田・高橋・水山は芦田・道上と同様な考え方に基づき、さらに、流体から河床へ伝達される掃流力は粒子の移動限界掃流力ではなくて停止限界掃流力になるはずであるとして、式(1.2.13)のτ*およびu*/uの項にその条件を導入するとともに、定数も若干変化させて、平たん河床を対象とし次式を提案した。

\[
\phi = 12 \frac{\tau_{*c}^{3/2}}{\tau_{*c}} 1-0.85 \frac{\tau_{*c}}{\tau_{*s}} 1-0.92 \frac{u_{c}}{u_{*c}} \]

芦田らは、山地河川のような河床勾配が急で砂礫の流速分布が広い条件にまで適用できるように配慮して、式(1.2.14)に勾配Iの影響を導入して、次式を提案した。

\[
\phi = \frac{12-24\sqrt{I}}{\cos\theta} \left[1-0.85 \frac{\tau_{*}}{\tau_{*s}} \right] \left[1-0.92 \frac{u_{c}}{u_{*c}} \right] \]

式(1.2.15)のIの項が導入されているのは抵抗係数がIによって変化することによる。すなわち、同じ\(\tau_{*s}\)に対して、Iが大きくなると抵抗係数は増加し砂礫移動に関係する粒子近傍の高さにおける流速は減少し、したがって、掃流砂量は減少するが、式(1.2.15)にはその影響が考慮されている。\(q_{B}\)に対するIの影響の程度は\(\tau_{*}\)によって異なり、\(\tau_{*}\)が大きくなるほど大きいか。\(\tau_{*}=0.1\)では、I=0.03程度以下であれば\(q_{B}\)に対するIの影響はほとんどない。しかし、\(\tau_{*}=0.3\)では、I=0.01程度でも、掃流砂量はI=0の場合に比べて10％程度減少し、さらにIが増加するとその影響は大きくなる。

混合砂礫床で、流砂量が粒径ごとに平衡し、河床砂の粒度構成が時間的に変化しない場合には、流体から河床へ伝達される掃流力が各粒の停止限界掃流に等しくかつその値は粒径に無関係に等しいと考えられる。実際にこのことは実験によって確かめられている。したがって、混合砂礫床に対しても、流砂が平衡している場合には式(1.2.14)あるいは(1.2.15)はそのまま適用できる。\(\tau_{*C}\)として平均粒径に対する値を用いることができる。この場合の粒径別の掃流砂量の式(1.2.14)あるいは式(1.2.15)で求めた流砂量にその粒径の河床構成の割合を乗じたものになる。

4.6 計画超過土砂量

計画超過土砂量は、砂防基本計画における土砂処理の計画の対象となる土砂量であり、計画基準点ごとに計画流出土砂量から、計画許容流砂量を差し引いた量で定める。

解説
計画超過土砂量は、貯水池上流においては浮遊土砂を含めた量で設定され、計画年平均許容流砂量(堤堰の計画堆積量)を差し引いた計画年平均超過土砂量を採用するものとする。
第5節 土砂処理計画，砂防設備配置計画

5.1 土砂処理計画

土砂処理計画は、計画基準点等において、土砂処理の対象となる。計画流出土砂量から計画許容流出土砂量を差し引いた土砂量について、合理的かつ効果的に処理するために策定するものである。土砂処理計画は、土砂生産抑制計画および土砂流送制御計画からなり、これらの計画はいずれも相互に関連するものである。

解説

土砂処理計画の策定に当たり、当該計画基準点（あるいは補助基準点）において、次式を満たす土砂生産抑制計画に必要な計画生産抑制土砂量と、土砂流送制御計画に必要な計画流出抑制土砂量および計画流出調節土砂量を定める。

\[
E = (Q + A - B)(1 - \alpha) - C - D \quad \cdots (1)
\]

\(E\): 計画許容流出土砂量

\(Q\): 当該計画基準点（あるいは補助基準点）の直上流の補助基準点における計画流出土砂量

\(A\): 計画生産土砂量

\(B\): 計画生産抑制土砂量

\(\alpha\): 計画基準点（あるいは補助基準地点）から下流に流出しない河道調節される土砂量の \((Q + A - B)\) に対する割合（河道調節率）

\(C\): 計画流出抑制土砂量

\(D\): 計画流出調節土砂量

上式は、上流からの流出土砂量に対して \((1 - \alpha)\) を乗ずることになるので、いわば複利計算により流出土砂量を算出することとなる。上式の計算回数を増やす（上式の計算地点を増やす）ほど流出土砂量は少なくなるので、計算にあたっては注意を要する。複利計算を行う地点に関しては、第3節計画基準点を参照されたい。

土砂整備率の一般式は次のとおりである。

\[
\text{整備率} = \left(1 - \frac{(Q + A - B)(1 - \alpha) - C - D - E}{(Q + A)(1 - \alpha) - E} \right) \times 100 \%
\]
5.1.1 土砂生産抑制計画（扜止計画）

土砂生産抑制計画（扜止計画）は、山崩れ、河床・河岸の侵食等を直接扜止することによって生産源地域の荒廃を復旧し、更に新規荒廃の発生を防止するとともに有害な土砂の生産を抑制するための計画である。

生産源の状況、土砂の生産形態、土砂の流出形態、保全対象区域等を考慮し、砂防堰堤、渓流保全工、護岸工、山腹工を合理的に配分する。

解説

砂防設備の扜止量（土石流発生抑制量）算出方法を次に示すが、扜止量は、本来、降雨等によって生産されるであろう土砂を施設で直接止める量であるから、その施設の影響範囲内の生産土砂量によって決定すべきである。現況調査（水源崩壊調査及び渓流調査）により生産土砂量を算出している場合にはその結果を利用して扜止量を算定する。比流出土砂量（1 km²当たり流出土砂量）により生産土砂量（流出土砂量）を算出している場合には次の方法で扜止量を算出してもよい。但し、扜止量が生産土砂量より多くなることはあり得ないので注意する。

①砂防堰堤……堆砂区間（砂防堰堤から現渓床と堆砂線の交点までの距離）の渓床堆積土砂量
なお堆砂勾配は現渓床勾配の1/2を基準とする。

概略値を求める場合は、

\[B = A_1 \times 2 \]

ここに B：扜止量（m³）

\[l = \frac{he}{I_0 - I_1} \]

A1：渓床堆積物の平均断面積（m²）

I：堆砂延長 I0：現渓床勾配

I1：堆砂勾配 h_e：砂防堰堤の有効高

図 4-5-1 砂防堰堤の抑止量（土石流発生抑制量）
②護岸工……施工区間の堆積土砂量
③山腹工…………工事施工面積×表層厚（通常1.0~2.0m）

5.1.2 流出土砂抑制計画（貯砂計画）

流出土砂抑制計画（貯砂計画）は有害な流出土砂を砂防設備に貯留して、土砂の流出を防ぐ計画である。

計画の策定にあたっては土砂の流出形態、保全対象地区、地形、河床勾配、計画超過土砂量及び粒径、河道等の荒廃状況、砂防設備の土砂捕捉機能等を考慮して、計画流出抑制土砂量を砂防堰堤、沈砂池等の計画貯砂量に合理的に分配する。（建河計 p82）

解説

① 砂防堰堤の貯砂量の算定

掃流区域では、標準として堆砂勾配を現渓床勾配の1/2として算定する。

土石流区域では、『第Ⅱ編第1章1.1 土石流・流木捕捉工（砂防堰堤）の種類と効果』によるものとする。

1. 原則として、20mピッチの横断図により算出する。
2. 概略値を求める場合は次によっても良い。

![砂防堰堤の貯砂量の計算式](image)

貯砂量の一般式

\[
C2 = \left(\frac{1}{I_0 - I_1} \right) \left(\frac{1}{2}Bo + \frac{m + n}{6}h_4 \right) h_4^2
\]

で求められる。

ここに、
- \(I_0 \): 現渓床勾配
- \(I_1 \): 堆砂勾配
- \(h_4 \): 砂防堰堤の有効高
- \(Bo \): 平均渓床幅
- \(m, n \): 堆砂地左右岸の平均側法勾配
5.1.3 流出土砂調節計画（調節計画）

流出土砂調節計画（調節計画）は、有害な土砂を砂防設備に一時的に貯留して、その後の流水によって土砂を安全に流下させる土砂量の調節機能のほか、流出土砂の粒径を調節する計画である。

計画の策定にあたっては、土砂流出の形態、量、粒径、河道の現況及びその計画、保全対象地区等を考慮し、計画流出調節土砂量を砂防堰堤等で合理的に配分するものとする。（建河計p52）

解説

流出土砂調節計画（調節計画）にあたっては、堰堤の水通しにスリットを設けたり、水抜孔の大きさ、配置を工夫するなどして、その機能の増大を図る。砂防堰堤の調節量は堆砂の安定勾配と洪水勾配との間の量で求められる。

なお洪水勾配は地形、流出土砂量、粒径等によって異なるが、掃流区域では現河床勾配の2/3を標準とする。

図4-5-3 掃流区域における調節計画

土石流区域では、『第Ⅱ編第1章1.1 土石流・流木捕捉工（砂防堰堤）の種類と効果』によるものとする。
第Ⅴ章 砂防堰堤

第1節 目的と型式

砂防堰堤は、土砂生産抑制施設および土砂流送制御施設として用いる。

1.1 土砂生産抑制施設としての砂防堰堤

土砂生産抑制施設としての砂防堰堤は、①「山脚固定による山腹の崩壊などの発生または拡大の防止または軽減」、②「渓床の縦侵食の防止または軽減」あるいは③「渓床に堆積した不安定土砂の流出の防止または軽減」を目的とした施設である。

計画に際しては、施設を設置する目的に応じて、施設の規模および構造などを選定し計画するものとする。

土砂生産抑制施設としての砂防堰堤の設置位置は、砂防堰堤に期待する効果と、地形、地質、不安定土砂の状況を勘案し、①については原則として崩壊などのおそれがある山腹の直下流、②については原則として縦侵食域の直下流、③については原則として不安定な渓床堆積物の直下流に配置するものとする。

解説

土砂生産抑制施設配置計画における砂防堰堤は、土砂生産抑制の目的に加えて土砂流送制御も目的として計画される場合が多い。

山脚固定を目的とする砂防堰堤は、砂防堰堤の設置により上流側に土砂を堆積させ、この堆積土砂によって渓床を上昇させて山脚を固定し、山腹の崩壊などの予防および拡大を防止する機能を有する。

縦侵食防止を目的とする砂防堰堤は、砂防堰堤の設置により上流側に土砂を堆積させて渓床の縦侵食を防止する機能を有する。

渓床に堆積した不安定土砂の流出防止を目的とする砂防堰堤は、砂防堰堤の設置により不安定土砂の流出を防止する機能を有する。

縦侵食防止を目的とする砂防堰堤および渓床に堆積した不安定土砂の流出防止を目的とする砂防堰堤は、河床変動計算や水理模型実験などを行って、砂防堰堤の規模を計画することができる。この場合、流量の時間変化、流砂量の時間変化、渓床に堆積した土砂の粒度分布など河床変動計算や水理模型実験などを行うために必要な条件を適切に設定する必要がある。砂防堰堤の設置については、構造物の安全、特に基礎の洗掘、袖部地山の流失防止のために、渓床および渓岸に岩盤が存在する場所に計画することが望ましい。また、単独の砂防堰堤によるか、連続する低堰堤群にするかはその地域の土砂生産形態の特性、施工、維持の難易により選定される。

砂防堰堤は、その型式、構造および材料によって分類される。型式・構造・材料の選定にあたっては、周辺環境や経済性などを基に検討する。

砂防堰堤の型式には、透過型と不透過型があり、構造には重力式、アーチ式などがある。また、材料にはコンクリート、鋼材、ソイルセメントなどがある。なお、土砂生産抑制施設としての砂防堰堤には、その地域の土砂生産形態、地形・地質条件、砂防堰堤に求められる機能等の観点から、透過型砂防堰堤
第Ⅳ編 参考資料 第5章 砂防堰堤

が適さない場合があることに注意が必要である。

1.2 土砂流送制御施設としての砂防堰堤

土砂流送制御施設としての砂防堰堤は、①「土砂の流出抑制あるいは調節」、②「土石流の捕捉あるいは減勢」を目的とした施設であり、その型式には、不透過型および透過型がある。計画に際しては、施設を設置する目的に応じて、施設の型式、規模および構造などを選定するものとする。土砂流送制御施設としての砂防堰堤の設置位置は、砂防堰堤に期待する効果と地形などを勘案し、狭隘部でその上流の谷幅が広がっているところや支川合流点直下流部などの効果的な場所に設置するものとする。

解説

土砂流送制御施設配置計画における砂防堰堤は、土砂流送制御の目的に加えて土砂生産抑制も目的として計画される場合も多い。

流出土砂の抑制を目的とする砂防堰堤は、堆積容量に流失土砂を貯留させることで、土砂の流出抑制機能を発揮する。この機能は堆砂によって失われるので、計画上これを見込む場合は除石などにより機能の回復を行う必要がある。

砂防堰堤の堆砂域では、多量の土砂の流入があるときの渓床と比較して、渓床勾配が緩くなるため、渓床幅が広くなり、一時的に安定勾配（静的平衡勾配に近い）より急な勾配（動的平衡勾配）で土砂が堆積する。流出土砂の調節を目的とする砂防堰堤はこの機能を活用して、流出土砂の調節を行うものである。また、土砂調節を目的とする透過型砂防堰堤は、格子等により大粒径の石などを固定したり、洪水を堰上げることにより流出土砂量およびそのピーク流出土砂量を調節する。なお、透過型砂防堰堤は透過部断面より渓流の連続性を確保することができる。

土石流を捕捉し減勢させることを目的とした砂防堰堤は、砂防堰堤が満砂の状態である場合には一時的に安定勾配より急な勾配で土石流を堆砂域に堆積させて、これを捕捉する。堆積容量を活用する場合には、堆積容量に土石流を捕捉することで、土石流の捕捉機能を発揮するが、この機能は堆砂によって失われるので、計画上これを見込む場合は除石などにより機能の回復を行う必要がある。また、渓床勾配を緩和させることにより土石流形態から挾流形態に変化させて減勢させる機能も有している。なお、土石流を捕捉し減勢させることを目的とする透過型砂防堰堤は、土石流により透過部を閉塞させて土石流を捕捉することを基本とする。

砂防堰堤の設置については、構造物の安全、特に基礎の洗掘、補助地山の流失防止のために、渓床および渓岸に岩盤が存在する場所に計画することが望ましい。また、単独の砂防堰堤にするか、連続する低堰堤群にするかは、その地域の土砂流送状態の特性、施工、維持の難易により選定される。

砂防堰堤は、その型式、構造および材料によって分類される。型式・構造・材料の選定にあたっては、周辺環境や経済性などを基に検討する。

砂防堰堤の型式には、透過型と不透過型があり、構造には重力式、アーチ式などがある。また、材料にはコンクリート、鋼材、ソイルセメントなどがある。

なお、原則として透過型砂防堰堤は、山脚固定の機能を必要とする場所には配置しない。

(国河計 p180)
第2節 施設効果量

2.1 掃流区間の不透過型砂防堰堤

不透過型砂防堰堤の施設効果量には、計画生産抑制土砂量と計画流出調節土砂量があり、除石を前提とする場合には計画流出抑制土砂量が評価できる。

解説

1 計画堆砂勾配等

掃流区間の施設効果を模式的に示すと図5-2-1のとおりであり、ここでの堆砂勾配の定義は、次のとおりである。

計画堆砂勾配：堆砂の安定勾配を計画堆砂勾配とする。
本マニュアルでは、現渓床勾配の1/2を計画堆砂勾配の標準とする。
洪水勾配：洪水直後一時に堆積する勾配を洪水勾配と言う。

图5-2-1 不透過型砂防堰堤の効果（掃流区間）

(1) 計画流出抑制土砂量（貯砂量）

計画流出抑制土砂量（貯砂量）は、堰堤箇所上流の横断測量による方法を用いるものとする。

①貯砂量（V 1 ）（図5-2-1参照）

掃流区間の貯砂量（V 1 ）は、計画堆砂勾配〜元渓床間の容量である。
なお、各勾配を標準で設定した場合の貯砂量（V i ）の略算式は、次のとおりである。

IV-5-3
\[V_1 = N \cdot B \cdot h^2 \]

\[B = \frac{2 \cdot b + h(m_1 + m_2)}{3} \]

\(h \): 有効高，\(1/N \): 現渓床勾配，\(B \): 平均堆砂幅，\(b \): 元渓床幅

\(1 \): \(m_1 \)，\(1 \): \(m_2 \): 渓岸の勾配（右岸，左岸）

(2) 計画流出抑制土砂量

除石を前提として，貯砂量のうち計画上復元させる容量が計画流出抑制土砂量となる。

(2) 計画流出調節土砂量

計画流出調節土砂量は，洪水，土石流等で一時的に堆積する（調節される）土砂量をいう。

掃流区間では，貯砂量の10%を計画流出調節土砂量とする。

(3) 計画生産抑制土砂量

計画生産抑制土砂量は，堤体および堰堤の堆砂により生産が抑制される土砂量をいう。

掃流区間では，計画堆砂面下に含まれた，計画生産土砂量を計画生産抑制土砂量として求める。

(図5-2-1参照)

2.2 土石流区間の不透過型砂防堰堤

| 土石流区間の不透過型砂防堰堤の施設効果量は，土石流・流木対策施設に準じて算出する。 |

解説

施設効果量は，水系砂防計画では，次のように読み替える。

計画捕捉量 → 計画流出調節土砂量

計画堆積量 → 計画流出抑制土砂量

計画発生（流出）抑制量 → 計画生産抑制土砂量

2.3 土砂調節のための透過型砂防堰堤（掃流区間）

| 土砂調節のための透過型砂防堰堤の施設効果量は，計画流出調節土砂量と計画生産抑制土砂量である。 |

解説

1 計画流出調節土砂量

洪水中に透過型砂防堰堤に堆積する最大土砂量を計画流出調節土砂量として評価する。（建透指P13）

(1) 既往の水理実験によれば，以下の事項が確認されている。

1 出水時前半からピークにかけて堰上げが生じると，堆砂区間に水中安息角 \(\theta = 30^\circ \sim 35^\circ \) で砂防堰堤上流側から堆砂肩が形成される。

2 堆砂肩の前面は砂防堰堤の上流側に達し，上流に向けては元河床勾配の1/2勾配で堆砂面が形成される。

3 洪水後半に堰上げが解消すると堆砂肩が崩れて土砂は高濃度で堰堤から流出する。

4 堰堤から流出する土砂は下流の渓流の土砂輸送能力が小さく流量も小さい場合には堰堤直下流付近に堆積する。

そこで，洪水後半に堰堤から流出し堰堤直下流付近へ堆積する土砂量も透過型砂防堰堤効果と考え，堰上げが生じているときの最大堆砂時の土砂量を計画流出調節土砂量として評価する（図5-2-1参照）
第Ⅳ編 参考資料 第5章 砂防堰堤

(2) 計画流出調節土砂量の算出

堆砂肩の高さZₛは次式によって求めることができる。

\[
Z_s = \left\{ \frac{Fr^2}{2} \frac{1}{\sqrt{\gamma s^2}} \left[\frac{3}{\sqrt{\gamma s}} - 1 \right] \right\} \left(\frac{n}{B_s \sqrt{i}} \right)^{0.66}.
\]

Zₛ：堆砂肩の高さ, Fr：等流水深に対するフルード数, γ：流水幅縮小率（＝Bₛ/Bₛ）, Bₛ：堆砂肩での流れの幅, Bₛ：堆砂肩での流れの幅, i：計画堆砂勾配, n：マニングの粗度係数, Q：計画洪水流量

土砂調節のための透過型砂防堰堤の計画流出調節土砂量は、透過部の形状、堤高、ハイドログラフ、流出土砂量、土砂の粒径等により変わるので、水理実験、河床変動シミュレーションおよび当該渓流における前例実績の分析を行う等して、慎重に検討することが望ましい。

堰上げ断面は、堰堤下流の河積等の状況も考慮して決定する。なお、堰堤箇所上流の横断測量による方法により、効果量を算出する。

また、連続して透過型砂防堰堤を設置する場合や透過型砂防堰堤と不透過型砂防堰堤を組み合わせて設置する場合の土砂の捕捉、調節効果の評価については数値シミュレーション、模型実験を行うなど、十分な検討を要する。（建透指p14）

2 計画生産抑制土砂量

土砂調節のための透過型砂防堰堤で透過部断面の底面の高さが最深河床高よりも高い部分については、計画生産抑制土砂量を評価する。 （建透指p15）

計画生産抑制土砂量を評価する範囲は、図5－2－2を参照のこと。

図5－2－2 土砂調節のための透過型砂防堰堤の効果 （建透指p14）
2.4 土石流捕捉のための透過型砂防堰堤（土石流区間）

土石流区間の透過型砂防堰堤の施設効果量は、土石流・流木対策施設に準じて算出する。効果量の読替は、第2節2.2を参照されたい。

3. 砂防堰堤

第3章 土石流区間の不透過型砂防堰堤

土石流区間の不透過型砂防堰堤は、土石流・流木対策の不透過型砂防堰堤に準じて設計する。効果量の読替は、第2節2.2を参照されたい。

第4章 掃流区間の不透過型砂防堰堤

4.1 設計流量

掃流区間の砂防堰堤の設計流量は、降雨量の年超過確率1/100もしくは既往最大雨量によって計算した計画高水流量に土砂混入率を加えた値とする。

\[
Q_1 = Q \left(1 + \frac{\alpha}{100}\right)
\]

\(Q_1\): 設計流量 (m³/s)
\(Q\): 計画高水流量 (m³/s) (第I編第3章計画高水流量参照)
\(\alpha\): 土砂混入率（%）

本マニュアルでは、土石流区間以外の砂防堰堤における土砂混入率は10%を標準、荒廃が激しい場合を20%とする。

4.2 水通し断面

水通し断面は原則として逆台形とし、その形状は次によるものとする。

1 水通し幅は、流水による堰堤下流部の洗掘に対処するため、側面侵食等の著しい支障をおよぼさない範囲において、できる限り広くする。
2 水通しの高さは、設計流量を流し得る水位に表5-4-1で定める余裕高以上の値を加えて定める。

表5-4-1 余裕高

<table>
<thead>
<tr>
<th>対象流量</th>
<th>余裕高</th>
</tr>
</thead>
<tbody>
<tr>
<td>200m³/s未満</td>
<td>0.6m</td>
</tr>
<tr>
<td>200～500m³/s</td>
<td>0.8m</td>
</tr>
<tr>
<td>500m³/s以上</td>
<td>1.0m</td>
</tr>
</tbody>
</table>

解説

1 水通しの底幅は溪床幅の許す限り広くして越流水深をなるべく小さくし、下流部の洗掘を軽減することが大切であるが、広すぎるために乱流する場合もあるので、慎重に検討する必要がある。

土石流、流木等を考慮して水通しの底の最小幅は3mとする。

2 袖小口の勾配

袖小口の勾配は、5分を標準とする。

3 水通し高さ

水通しの高さの算定は、次式により求める。
ただし、越流水深 \(h_3 \) は、3m以下とすることが望ましい。

\[
H_3 = h_3 + h_3'
\]

\(H_3 \) : 水通しの高さ (m)
\(h_3 \) : 越流水深 (m)
\(h_3' \) : 余裕高 (m)

対象流量に応じた水深 \(h_3 \) は、式(1)により算定する。

\[
Q = \frac{2}{15} \cdot C \cdot \sqrt{2g \left(3B_1 + 2B_2 \right) h_3^{3/2}} \]
\[
\cong (0.71h_3 + 1.77B_1)h_3^{3/2}
\]

\(Q \) : 対象流量 \((m^3/s) \)
\(C \) : 流量係数 (0.6)
\(g \) : 重力の加速度 \((9.8m/s^2) \)
\(B_1 \) : 水通し底幅 (m)
\(B_2 \) : 越流水面幅 (m)

図5-4-1 水通し

注-1) \(B_1 \) は、許す限り広くとり、0.5m単位とする。
注-2) \(h_3 \) は、通常の場合3.0mを最大とし0.1m単位とする。

図5-4-2 水通し断面

4 最小断面
水通し断面の最小断面については、転石等の混入の配慮から図5-4-3を標準とする。

図5-4-3 水通しの最小断面

IV・5・7
4.3 本体の設計

4.3.1 水通し天端幅

水通し天端幅は、ダムサイト付近の河床構成材料、流出土砂形態、対象流量等の要素を考慮して決定するものとする。（建河Ⅱp10）

解 説

砂防堰堤の天端幅は、流出土砂等の衝撃に耐えるとともに、水通し部では通過砂礫の摩耗等にも耐えるような幅とする必要がある。このため、天端幅は、一般に表5-4-2に示す値を参考とする。

本マニュアルでは、掃流タイプの重力式コンクリート堰堤の水通し天端幅は2.0mを標準とする。

表 5-4-2 天端幅

<table>
<thead>
<tr>
<th>天端幅（m）</th>
<th>1.5〜2.5</th>
<th>3.0〜4.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>河床構成材料</td>
<td>砂混じり砂利～玉石混じり砂利</td>
<td>玉石～転石</td>
</tr>
<tr>
<td>流出土砂形態</td>
<td>出流土砂量の比較</td>
<td>常時流出土砂の流出</td>
</tr>
<tr>
<td></td>
<td>較的少ない地区</td>
<td>出が多い地区</td>
</tr>
<tr>
<td></td>
<td>小規模の土石流</td>
<td>大規模の土石流</td>
</tr>
<tr>
<td></td>
<td>発生地区</td>
<td>常襲地区</td>
</tr>
</tbody>
</table>

（建河Ⅱp10）

4.3.2 設計外力

掃流域の砂防堰堤の安定計算に用いる設計外力には、自重、静水圧、堆砂圧、揚圧力、地震時慣性力、地震時動水圧、温度荷重があり、堰堤の高さ、型式により選択するものとする。（建河Ⅱp4一部改）

解 説

砂防堰堤断面の安定計算に用いる荷重の組合せは、自重の他は表5-4-3のとおりとするのが一般的である。

表 5-4-3 設計荷重の組合せ

<table>
<thead>
<tr>
<th>堰堤型式</th>
<th>平常時</th>
<th>洪水時</th>
</tr>
</thead>
<tbody>
<tr>
<td>重力式コンクリート堰堤</td>
<td>堰堤高15m未満</td>
<td>静水圧</td>
</tr>
<tr>
<td>堰堤高15m以上</td>
<td>静水圧、堆砂圧、揚圧力、地震時慣性力、地震時動水圧</td>
<td>静水圧、堆砂圧、揚圧力</td>
</tr>
</tbody>
</table>

（注）堤高は、堰堤基礎地盤から水通し天端までの高さとする。 （建河Ⅱp5）
4.3.3 下流のり勾配

越流部断面の下流のり勾配は、1：0.2を標準とするが、流出土砂の粒径が小さく、かつ、その量が少ない場合は必要に応じてこれより緩くすることができるものとする。

非越流部断面の下流のり勾配は、越流部の下流のり勾配と同一とすることを標準とする。非越流部の断面を変える場合は、平常時、洪水時の安定性のほか、15m以上の堰堤については、未満砂で湛水していない状態のときに下流側から地震時慣性力が作用する状態についても安全性を有する断面とする。

解説 1 越流部

重力式コンクリート堰堤の断面形状は、一般に、作用する荷重の合力の作用線が堤底の中央1/3以内に入るように堤体の形状を定める方法が用いられており、この方法では上流面が鉛直に近いほど有利である。しかし、越流部においては落下砂礫の衝撃および摩耗を考慮する必要があり、下流面を鉛直に近い形状としなければならない。

越流部は、堰堤上流面を鉛直に近づけるほど経済断面となるが、流出土砂が少なく渇水期に空虚に近い状態となる堰堤では、下流側から働く地震時慣性力に対して安定性を欠く恐れもあり、そのような状態が想定される堰堤では、上流面に多少ののり勾配を付ける必要がある。

2 非越流部

非越流部では、落下砂礫の衝撃および摩耗を考慮する必要がないので、下流面勾配を緩くすることができる。非越流部の形状を越流部と変えるかどうかは、その安全性、経済性および施工の難易等を考慮して決めるべきであるが、一般に、コンクリート全容量の1割以上の低減を目安として検討する場合が多い。

4.4 安定条件

重力式コンクリート堰堤は、地形、地質および流出土砂形態を考慮し、堤体および基礎地盤の安全性が確保できるように設計するものとする。

堤体の安定計算においては、次の条件を満足するものとする。
1 原則として、堰堤の堤底端に引張応力が生じないように、堰堤の自重および外力の合力の作用線が堤底の中央1/3以内に入ること。
2 堤底と基礎地盤との間および基礎地盤内で、滑動を起こさないこと。
3 堰堤内に生じる最大応力度が、材料の許容応力度を越えないとともに、地盤の受ける最大圧力が地盤の許容支持応力度以内であること。また、基礎地盤が砂礫の場合は、浸透破壊に対しても安定であること。

4.5 安定計算

安定計算は、越流部の断面で行うことを基本とし、本章第4節「4.3.2設計外力」に示した外力を組み合わせて行う。

解説 堤体の上流のり勾配は安定計算により求めるものとするが、安全性への配慮から、上流のり勾配は
第Ⅳ編 参考資料 第5章 砂防堰堤

1.0.2よりも急にならないようにする。設計に使用する上流のり勾配は、切り上げて0.05単位とする。
15m以上の堰堤については、未満砂の状態で湛水していない状態のときに下流側から地震時慣性力が作用する状態についても照査する。
計算方法等は、土石流タイプの不透過型砂防堰堤を参照されたい（洪水時、平常時）。 （第Ⅲ編第2章第3節3．5）

4.6 袖の設計

堰堤の袖は、洪水等を越流させないことを原則とし、想定される外力に対して安全な構造として設計するものとする。なお、その構造は、次によるものとする。

1. 袖天端の勾配は、上流の計画堆砂勾配程度とする。
2. 袖天端の幅は、水通り端幅と同一とし、構造上の安全性も考慮して定める。
3. 袖の両岸への嵌入は、堤体基礎と同程度の安定性を有する地盤まで行う。
4. 屈曲部における堰堤の凹岸側の袖高は、偏流を考慮して定める。（建Ⅱp14）

解説

1. 袖天端の勾配

袖天端の勾配は、掃流区間に設置する堰堤については計画堆砂勾配と同程度とする。

袖天端に勾配をつけるのは、洪水時に異常な土砂流出が発生すると、堆砂地上流端を頂点とする扇状堆積により流出が二分されたり袖部に異常な堆積が発生しその上を流水が走って袖部を越流する恐れがあるため、経験的に定まった前庭保護対策である。

なお、袖の天端に勾配をつける区間の長さ（L）は、最小で10m、最大で20mとする。

2. 袖天端の幅

袖天端の幅は、水通り端幅と同一を標準とし、構造上の安全性も考慮して定める。

特に流出土砂による衝撃を考慮する必要がある箇所や越流水深が高い箇所では、せん断による破壊に対する安全を検討し、場合によっては袖部の拡幅を考慮する。

4.7 構造細目

ここで記載のない事項に関しては、土石流タイプの不透過型砂防堰堤を参照されたい。
第5節 土石流区間の透過型砂防堰堤

水系砂防計画における土石流区間の透過型砂防堰堤は、土石流・流木対策の透過型砂防堰堤（土石流捕捉のための透過型砂防堰堤）に準ずる。

第6節 土砂調節のための透過型砂防堰堤（掃流対応）

6.1 水通し断面

水通しは、設計流量を安全に流下させる断面とする。

解 説

設計流量、水通し断面は本章第4節 掃流区間の不透過型砂防堰堤に準ずる。

図5-6-1 透過型砂防堰堤（土砂調節のための透過型砂防堰堤（掃流対応））の水通し

6.2 透過部断面

6.2.1 透過部断面の位置

1 縦断方向

土砂調節のための透過型砂防堰堤での透過部断面の底面高は渓流の連続性を考慮して、原則として最深河床高程度とする。透過部断面を複断面にする場合でも、上下流の連続性を考慮して透過部断面の高さを設定する。（建透指 p7）

2 横断方向

渓流の連続性ならびに両岸の安定を確保できる位置に透過部断面を設置する。この場合、土砂の堆積に支障がないよう注意する。（建透指 p7）

解 説

1 縦断方向

堰堤直下流が洗掘された場合でも透過型砂防堰堤が十分に渓流の連続性機能を発揮するためには、渓床の縦断形を経年的に把握しておく必要があり、データが得られる場合は過去5年程度の最深河床にも対応できるように透過部断面の底面の高さを計画する。（建透指 p7）

2 横断方向

堰堤の軸が流路の屈曲部に位置するときは流水の直進性を考慮し、透過部断面は堤体の安定を損なわない範囲で外側に設置するのが望ましい。（建透指 p7）
6.2.2 透過部断面の大きさ

<table>
<thead>
<tr>
<th>設定項目</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 透過部断面の幅</td>
<td>水理計算等によって堰上げが起こることが確認できる幅以下とする。土砂の調節を目的とする場合には、透過部が流下土砂によって閉塞されることを想定しないが、土流の見込まれる渓流にあっては、別途流木対策も検討する。 （建透指 p12）</td>
</tr>
<tr>
<td>2 透過部断面の高さ</td>
<td>透過部断面の高さは、堆砂肩の高さより大きくなるように設定する。</td>
</tr>
</tbody>
</table>

解説

1 透過部断面の幅

透過部断面の幅の設定にあたっては、水理計算や水理模型実験等により、堰上げおよび土砂流出ピークの調節が起こることを確認する。ただし、出水中の堰上げによって流出を調節された土砂の一部が、出水後も施設付近に残ることがあるため注意するとともに、流木の見込まれる渓流にあっては、透過型砂防堰堤が流木によって閉塞されることを前提に設計すること。また、除石の際に仮設道路として透過部断面を使用する場合には、建設機械の使用についても検討すること。（建透指 p12）

ここで、透過部断面の幅の総和は、第5章第2節2.3の式 (堆砂肩の高さ \(Z_s \) を求める式) で使用する \(B_d \) （堰堤地点の流れの幅）であり、透過部断面の幅の総和が同じならば、複数の透過部断面を設けても土砂調節効果は変わらないとされている（砂防学講座第5巻-2, p75）。

土砂調節効果をもたらすスリットの密度は、0.2<\(\Sigma b / B <0.6 \) と言われている。

ここに、\(\Sigma b \) : スリット幅の総和
\(B \) : 河幅

出典：新砂防114号，スリット砂防堰堤土砂調節効果に関する実験的研究，S55.3

また、土砂調節のための透過型砂防堰堤においては、調節効果を維持するためには、透過部断面が礫等で閉塞しないことが望ましい。透過部断面が閉塞しない条件は、次式で示される（新砂防114号，スリット砂防堰堤土砂調節効果に関する実験的研究P38，S55.3）。

\[
\frac{b}{d_{\text{max}}} > 2.0
\]

\(b \) : スリット幅, \(d_{\text{max}} \) : 流下する土砂の最大粒径

また、水通し下部の不透過部の厚さ（B）は、最小でも2m程度はとること（砂防学講座第5巻-2, P76）とされていることより、水通し天端幅以上の厚さをとることとする。

以上の事項を踏まえ、ダムサイトの地形を考慮したうえで、透過部断面の幅、配置を決定するものとする。

2 透過部断面の高さ

土砂調節を目的とする場合には、土砂流出のピークが到達する前から湛水し、堰上げることが調節効果を大きくするため、設計流量より小さい流量でも堰上げが生じるよう設計するのが望ましい。なお、水通し断面についても、計画洪水流量を流下させて断面を確保する。
第Ⅳ編 参考資料 第5章 砂防堰堤

\[h = \left(\frac{3Q}{2\mu \cdot b \cdot \sqrt{2g}} \right)^{\frac{1}{2}} \]

ここで、\(b \)：スリット幅，\(g \)：重力加速度，\(Q \)：透過部の流量，\(h \)：透過部の水深，\(\mu \)：流量係数
ただし、流量係数（\(\mu \)）は透過部断面の形状によって変化するため、実際の設計にあたっては水理実験や数値シミュレーションによって決めなければならない。

[参考]流量係数（\(\mu \））（土木技術資料、スリットを有する砂防ダムの土砂調節機能に関する検討、H2.1）

6.3 本体の設計
6.3.1 水通し天端幅
水通し天端幅は、不透過型砂防堰堤（掃流タイプ）と同様とする。

6.3.2 下流のり勾配
下流のり勾配は、外力に対し安全でかつ経済的な断面として求める。

解説
透過型砂防堰堤は水通し部を越流する頻度が少ないため、下流のり勾配を一般的な1：0.2より緩くしてよい。

下流のり勾配は、地震にも配慮して上流のり勾配の下限を1：0.2とし、安定計算によって安全で最も経済的になるように定める。

6.3.3 安定計算
安定計算は、スリットを考慮して行う。

解説
計算方法は、不透過型砂防堰堤（掃流タイプ）と同様である。
ただし、堤体自重は越流部を不透過構造と見なしして計算される堤体ブロックの体積（\(V_c \)）と、越流部を透過構造として計算される堤体ブロックの重量（\(W_{rc} \））を用いて計算する。なお、越流部の堤体ブロックは、水通し幅分の堤体部分を指すものであり、施工目地によるブロックではないことに注意する。

\[r_{nc} = \frac{W_{nc}}{V_c} \]

\(r_{nc} \)：見かけのコンクリート単位体積重量
\(W_{nc} \)：スリット部を除いた堤体重量
複数のスリットを有する透過型砂防堰堤を設計する場合、コンクリートの柱状構造物（スリットピア）が形成されるため、スリットピアに作用する水圧に対する安定性についても検討しなければならない。検討の結果、スリットピアに引張応力が発生するなど安定条件が満たされないことが確認された場合、以下のような処置を講ずる。

- スリットピアを鉄筋で補強する。
- スリットに横材を設置し、堰堤軸方向の外力に対するスリットピアの強度を高くする。

6.4 摩耗対策

透過部断面の側面および底面を設計するにあたっては、土砂の流出頻度と粒径に応じて耐摩耗性を確保する。（透指 p9）

解説

透過部断面は、石礫の流下が集中するため、中小出水時から洪水時を通じて摩耗、石礫による損傷が考えられる。

このため、流出土砂の量、質の状況を踏まえ、必要に応じて耐摩耗・損傷の対策を講ずる。

摩耗対策の主な工法としては、以下のものがある。

1. 張石工
 - スリット部を良質堅固な石材（花崗岩、安山岩）等で張石するもので、堰堤天端保護工として従来より用いられてきた方法である。

2. 鉄材コンクリート
 - 鉄粉とセメントで構成される材料で透過部を覆うもの。

3. 富配合コンクリート
 - 本体のコンクリートに比べ富配合とし、強度を高めたもので、透過部を覆うもの。流送土砂が小さく流量の少ない箇所、特に床固工等の天端保護工としてよく使用されている。

4. グラノリシックコンクリート
 - 粗骨材とセメントを混合し細骨材は用いないコンクリートで透過部を覆うもの。

5. ラバースチール
 - ゴム中に鉄板を完全に接着し埋め込んだ構造のラバースチールで透過部を覆うもの。ラバース

\[V_c \text{：スリット部を含む堤体積} \] (土流設 p20)
チールはゴムの持つ「緩衝性，耐摩耗性」および鉄の「強靭性」とを兼ね備える部材である。

スリット部の補強部材の選択は，上記の①～⑤の工法等から，経済性や施工性を十分に検討して決定する。

6.5 前庭保護工

土砂調節のための透過型砂防堰堤においては，原則として前庭保護工を設置する。

解説

土砂調節のための透過型砂防堰堤では，中小出水時から洪水時を通じて流水が透過部断面に集中することが考えられるので，直下流の洗掘に対する対応が必要であると考えられる。

前庭保護工は，土石流・流木対策の不透過型砂防堰堤に準じて検討する。

6.6 構造細目

ここで記載のない事項に関しては，掃流タイプの不透過型砂防堰堤を参照されたい。
第Ⅳ編 参考資料 第6章 山腹保全工

第6章 山腹保全工

第1節 山腹保全工の工種

山腹保全工の設計に当たっては、その目的である機能が十分発揮できるよう考慮し、安全性、維持管理等についても考慮するものとする。（建河Ⅱp27）

解説

山腹保全工とは、とくしゃ地あるいは崩壊地に植生を導入し、表土の風化、浸食、崩壊の拡大を防止して、土砂生成の抑制を図ることを目的とするものであり、計画編第1章第4節4-2-7を参照の上、設計するものとする。

山腹保全工の工種は、その目的から山腹基礎工、山腹緑化工に大別される。山腹基礎工とは、のり切り工等を行った後の堆積土の安定を図るとともに、山腹排水路を設け、雨水による侵食を防止することにより、施工対象地を将来林地とするための基礎作りを行う工法である。山腹緑化工は、施工対象地に直接植生を導入して緑化を図る工法である。それぞれのなかに含まれる代表的な工種は、次の通りである。

図6-1-1 山腹保全工の代表的工種

1.1 地質および気象等の環境別工種

山腹保全工の工種は、一般には次の基準により選定する。（建河Ⅱp27）

解説
表 6-1-1 地質及び気象等の環境別工種

<table>
<thead>
<tr>
<th>地質区分</th>
<th>気象</th>
<th>中、古生層地帯</th>
<th>第三、第四超層地帯</th>
<th>花崗岩地帯</th>
<th>火山堆積物地帯</th>
</tr>
</thead>
<tbody>
<tr>
<td>一般地帯</td>
<td>渓流工事に重点をおく、山腹工事では土留工を最小限とする。</td>
<td>崩壊面の土壌は比較的良好であり、植生の導入を積極的にはかる。</td>
<td>客土的要素をもつ山腹緑化工を十分に行う。斜面は侵食されやすいため、被覆を完全に行う。</td>
<td>地形が急峻であるため、基礎工事によって地形を修正する。全面被覆工を必要とする所もある。</td>
<td></td>
</tr>
<tr>
<td>多雨地帯（年間降水量 2,000mm以上）</td>
<td>山腹工事に重点をおくが山腹基礎工事を少なくし、山腹緑化工に主力を注ぐ。</td>
<td>山腹基礎工を十分に行う必要がある。</td>
<td>一般地帯に準ずる。</td>
<td>シラス地帯(南九州)がこれに相当する。のり切りは垂直とし、客土的効果のある緑化工を行う。</td>
<td></td>
</tr>
<tr>
<td>豪雨地帯（年間降水量 1,500mm以下）</td>
<td>一般に荒震は軽微であり、簡単な筋工等でよい。</td>
<td>山腹緑化工とし、一気に実施する。山腹基礎工は最小限とし、山腹面の緑化に重点をおくる。</td>
<td>山腹基礎工は最小限とし、山腹面の緑化に重点をおくる。（特に客土的緑化工）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>多雪地帯</td>
<td>なだれを考慮した山腹工事を必要とする。</td>
<td>山腹排水路工の施工密度を高くし、完全排水につとめる。</td>
<td>なだれを考慮した山腹緑化工を必要とする。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>冬上地帯</td>
<td>各種の伏工と植生によって、地表を被覆し温度低下を防止する。階段工は破壊されやすいため、できる限り施工を避ける。</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.2 荒廃形態別の工種

設計順序にそって工種の選定を検討すると、次のようになる。（建河Ⅱp27）

解説

① とくしゃ地
谷止工→土留工（ブロック板積工）→のり切工→山腹階段工（積苗工,筋工）→伏工（そだ伏工,わら伏工,種子袋工,植生盤工）→植栽工
② 崩壊地
谷止工→土留工（コンクリート擁護壁, コンクリートブロック積工）

[自然復旧の期待できる所]
山腹工終了

[自然復旧の期待しにくい所]
山腹排水路工（コルゲート水路工, そだ暗渠工）→山腹階段工（積苗工, 筋工）→伏工
→植栽工
図 6-1-2 とくしゃ地における山腹保全工の設計
崩壊地における山腹保全工の設計

図 6-1-3 崩壊地における山腹保全工の設計
図6-1-4 とくしゃ地（施工例）断面図（単位：m）
第 2 節 山腹工の設計

2.1 谷止工
谷止工は砂防えん提に準じて設計するものとする。 （建河 II p28）

解 説
谷止工は、侵食の規模の大きいとくしゃ地及び崩壊地において、侵食に防止および他の工作物の基礎とする工法である。
谷止工の設計は砂防えん提に準ずるものとするが、天端幅については、流水の量、流送土砂の形態等の条件から適切と認められる場合は、第 5 章第 4 節 4.3 に示された値より薄くすることができる。

2.2 のり切り工
のり切り工は、山腹斜面の安定を図りうる構造として設計するものとする。 （建河 II p32）

解 説
のり切り工とは、山腹斜面に不規則な起伏および急峻な斜面があって、放置すれば将来斜面の安定を保つことができないと予想される場合、起伏を整正して緩傾斜として安定した斜面を造る工法であり、のり切りの直高が高い場合には原則として上部を急傾斜に、下部を緩傾斜にするものとするが、のり切勾配は 1 割 5 分を標準とする。
のり切りが大規模で掘削土砂が多量な場合は、斜面の安定を図るため押え盛土を実施する場合もある。
押え盛土とは、不規則な起伏や急峻な斜面を安定にするため、石積工や編柵工を基礎として土砂等により盛土して緩斜面を造る工法であり、一般に施工地付近に石材が多い場合は石積工とし、石材の乏しい場合は編柵工を基礎とする。

2.3 土留工

土留工は、地形、地質、気象等の条件および安全性を考慮して、設計するものとする。土留工は、のり切工において堆積地の傾斜が急な場合、堆積土砂の安定を図り、上部に施工する山腹工の支えとするものである。また、とくしゃ地及び崩壊地の傾斜が急傾斜である場合や上部の林地が急傾斜である場合は、土留工を計画することによりのり切面積を最小限にとどめ、のり勾配を緩和させることができる。

使用する材料によって、ブロック板積工、コンクリート擁壁工、コンクリートブロック積工、石積工、ふとん寵工、コンクリート枠工等に分けられる。

ブロック板積工は、軽量であるため運搬に便利でかつ施工も容易であるが、土圧の大きな箇所には適切でない（図6-2-1参照）。

コンクリート擁壁工及びコンクリートブロック積工は、一般土木工事に準じて使用するものとするが、比較的土圧の大きい箇所に使用することができる。

石積工には、空石積工と練石積工があり、空石積工は高さ2mを限度とし、のり勾配は5分より急にしないことを標準とする（図6-2-2参照）。また、練石積工は5分より急にしないことを標準とする（図6-2-2参照）。

ふとん寵工は永久工作物でなく、原則として高さ2m以下とし、止坑は腐朽しにくい樹種を使用し一般に杭間隔2mを標準とする（図6-2-4参照）。

コンクリート杭工は、基礎地盤の不安定に使用するものとする。

図6-2-1 ブロック板積工（単位：m） 図6-2-2 石積工
第Ⅳ編 参考資料 第6章 山腹保全工

図6-2-3 ふとん籠工

2.4 水路工

水路工は、流水を速やかかつ安全に計画対象区域外へ排水しうる構造として設計するものとする。

解説

水路工は流水による斜面の浸食を防止するために設けるものであり、その設計においては、勾配の急変を避けるとともに徐々に緩勾配に移すこととし、崩壊地帯の凹部の地盤に十分埋め込み、周囲の流水を集めやすいように配慮する。通水断面は、対象流量を安全に流し得るよう十分に余裕を持たせる。また、水路工の上、下流端には、土留工あるいは帯工を設ける。また、水路長が長い場合には、水路長20～30mごとに帯工を設けて水路の安定を図る。

水路工の種類は、使用材料によってコルゲート、張石、張芝、ヒューム管、コンクリート水路工等に分けられる。

参考に、コルゲート水路工の例を図6-2-4に示す。

図6-2-4 コルゲート水路工の例（単位:mm）

2.5 暗渠工

暗渠工は、原則として不透水層の上に設けるものとし、速やかに地下水を地表面に導き、排水しうる構造として設計するものとする。

(建河Ⅱ p33)
解説
暗渠工は、斜面の安定に対して悪影響を及ぼす恐れのある地下水を排除するために設けるものであり、湿潤な所や湧水の生じる所などの地下水を最も容易に排水できるように配慮し、地山の不透水層の上部に設けるものとする。

暗渠工の使用材料としては、そだ、蛇果、栗石、多孔管、化学製品等があり、そだ暗渠工は小規模な暗渠として使用される。蛇果暗渠工は、地盤が不安定で変動しても有効に働くようにするために使用するもので、一般に円筒型蛇果を用いる。栗石暗渠工は、地下水が多い場合に用いられ、石の径は5〜15cmのものを使用している。また、最近では多孔管及び化学製品等を使用することもある。

参考に、蛇果暗渠工を図6-2-5に示す。

図 6-2-5 蛇果暗渠工の例（単位：mm）

2.6 柵工
柵工は、山腹斜面の表土の流出を防止しうる構造として設計するものとする。（建河II p34）

解説
なお、柵工は、原則として切取り部で使用するものとし、盛土部での使用は避けるものとする。
柵工は、施工地付近に山芝や石材が乏しく、山腹斜面の土層が比較的厚く、植生の導入が容易な箇所において用いるものとする。
柵工は、使用材料によって編柵工、コンクリート板柵工等がある。
参考として、編柵工を図6-2-6に示す。

図 6-2-6 編柵工の例

IV-6-10
第Ⅳ編 参考資料 第 6 章 山腹保全工

2.7 積苗工

積苗工は、地山が露出した斜面の安定を図りうる構造として設計するものとする。その工法は、地形、地質、気象等の条件に応じて選定するものとする。

(建河Ⅱ p35)

解 説

積苗工は、地山に直高 1.5m 程度、幅 1m 程度の階段状の段取りを行った後、芝又はわらを積み、土砂で埋め戻して植栽床とするものである。積苗工は、使用材料によって芝積苗工、わら積苗工等に分けられる。芝積苗工は、豪雨、乾燥地帯の荒廃地の積苗工として代表的なものであって、芝の供給可能な場所に適する（図 6-2-7参照）。立芝とする場合は、通常 3 枚以下とする。わら積苗工は芝積苗工の主材料である芝の不足場所に設けるものとする（図 6-2-7参照）。

なお段積苗工とは、積苗工の斜面において階段的に連続して設ける工法で、主に堆積土砂の上に施工するものである。

![積苗工の例 (単位: m)](image)

2.8 筋工

筋工は、斜面の安定を図りうる構造として設計するものとし、その工法は、地形、地質、気象等の条件に応じて選定するものとする。

(建河Ⅱ p35)

解 説

筋工には、使用する材料によってかや筋工、芝筋工、そだ筋工等に分けられる。

かや筋工は、一般には、直高 1.0〜1.5m、階段幅 0.4〜0.6m、かやを 1m 当たり 0.2〜0.3 束で施工する。また、地味のよい比較的傾斜の緩やかな堆積土の地帯でかやの成長が期待できる箇所では、階段を設けない場合もある（図 6-2-8参照）。

芝筋工は、とくしゃ地帯の雨水による侵食の少ない箇所にかや筋工の代わりとして施工される（図 6-2-9参照）。

そだ筋工は、比較的水分の多い所でそだの入手しやすい箇所に施工される。一般にそだ筋工は直高 1.0〜1.5m 程度、階段幅 0.6〜0.8m 程度、そだの長さ 40cm 程度、そだ束の径 10cm 程度とし、その束の間にかや株あるいは多年生草を埋め込みそだの腐朽にそなえるものとする（図 6-2-10参照）。
第Ⅳ編 参考資料 第6章 山腹保全工

2.9 伏工

伏工は、積苗工、筋工等の間ののり面における表面侵食を防止しうる構造として設計するものとし、その工法は、地形、地質、気象等の条件に応じて選定するものとする。

伏工には、使用材料によって、そだ伏工、むしろ伏工、網状工等がある。

伏工は、崩壊地やとくしゃ地においてのり面の表面侵食を防止する工法で、使用材料が腐朽するまでにのり面を安定させるため、草木の種子を播種することが望ましい。この場合、主としてそだ伏工、網状工を用いる。また、直接播いた草木の種子の流亡防止を目的とし、施工地の立地条件が比較的よい箇所では、わら伏工、むしろ伏工等を用いる場合もある。

そだ伏工は、一般に比較の面積の小さなくしゃ地、又は積苗工、筋工等ののり面に用いられ、そだの入手が容易で止杭が確実に打ち込む箇所に用いる。一般にそだ伏工は、そだを横に並べ、1.0m以内毎に線材（押木）を設置し、止杭によって固定する（図6-2-11参照）。

図6-2-8 かや筋工

図6-2-9 芝筋工

図6-2-10 そだ筋工
網状工は、緩傾斜で軟弱な山腹に適合している。網目の大きさは普通縦径2m、横径4mの菱形とする。接合点及びその中の間を竹串又は杭により固定する。（図6-2-12参照）。網目には、施工地に適した根の繁茂する苗木を植栽することもある。なお、最近では合成樹脂製品を利用してその中に草木の種子を入れた種子袋工や植生盤工等が多く利用されている（図6-2-13）。

実播工は、草木の種子を直接播くことにより早期に緑化が図りうるよう設計するものとする。

実播工は、草木の種子を直接播き、早期に緑化を図ることが目的であり、山腹傾斜が緩やかで土壌条件の良好な箇所に用いる。実播工として使用する草木類は、周囲の植生状況を考慮し、単一なものに偏らず生育期間の異なる草木を選択することを原則とし、乾燥地、癖地に耐えるもの、根系、地上茎がよく繁るもの、再生力が強く多年生であるもの、草丈が低く広がり性の大きいもの、秋から早春にかけて成長するものを用いる。

実播工を急傾斜地で用いる場合は、一般に伏工等により種子、肥土の流亡を防ぐことに留意する必要がある。

図6-2-11 そだ伏工
図6-2-12 網伏工
図6-2-13 わら状工及び植生盤工

2.10 実播工
2.1.1 植栽工

植栽工は、早期に緑化することにより斜面の安定を図りうるよう設計するものとする。その工法は、地形、地質、土壌、気象等の条件に応じて選定するものとする。（建河Ⅱp38）

解説
植栽工に用いる適木としては、乾燥地、酸化地に耐えるもの、根系の発達が旺盛で速やかに土地を固定するものの、萌芽力の旺盛なもの、諸種の害（病害虫、寒気、霜収温度変化）に対して抵抗力の大きいものを用いる。

植栽工に用いる樹木は、表8-2-2を標準とする。

〔参考6.1〕積石工
積石工は、常時水分の多い所、または雨水が集中してのり切面の土砂が流出しやすい所で強度を必要とする箇所に適し、山腹に凹凸が多くかつ地質が堅い箇所ののり切工に際して、転石が多い箇所で積石工の代わりに用いる工法であり、通常石の控え長は0.3m程度、のり勾配は3〜4分、積石の高さ0.5〜1.0m、犬走り0.15〜0.2mを標準とする。

積石工は、図6-2-15を参考に設計するものとする。

〔参考6.1〕粗朶積工
粗朶積工は、一般に凍上、凍結の激しい地域で山腹斜面の水分保有量を大きくするために用いる工法で、高さは1.0m程度を標準とする。

粗朶積工は、図6-2-15を参考に設計するものとする。
表 6-2-2 主要山腹砂防用樹木類

<table>
<thead>
<tr>
<th>樹種名</th>
<th>適応性</th>
<th>造林方法</th>
<th>活着力</th>
<th>根系の発達</th>
<th>耐せき悪性</th>
<th>耐乾性</th>
<th>耐湿性</th>
<th>耐寒性</th>
<th>耐陰性</th>
<th>耐酸性</th>
</tr>
</thead>
<tbody>
<tr>
<td>アカマツ</td>
<td>潮風に弱いか、内陸に用いる</td>
<td>植栽播種</td>
<td>良</td>
<td>良</td>
<td>大</td>
<td>大</td>
<td>小</td>
<td>大</td>
<td>小</td>
<td>小</td>
</tr>
<tr>
<td>クロマツ</td>
<td>最も一般的である</td>
<td>同</td>
<td>良</td>
<td>良</td>
<td>大</td>
<td>中</td>
<td>大</td>
<td>小</td>
<td>中</td>
<td>小</td>
</tr>
<tr>
<td>ニセアカシア</td>
<td>崩壊地、めや肥沃なはげ山</td>
<td>植栽</td>
<td>良</td>
<td>良</td>
<td>大</td>
<td>中</td>
<td>大</td>
<td>小</td>
<td>中</td>
<td>小</td>
</tr>
<tr>
<td>トゲナシ</td>
<td>一般の荒廃地に適するが、崩壊地には不適当</td>
<td>さし木</td>
<td>良</td>
<td>良</td>
<td>大</td>
<td>中</td>
<td>大</td>
<td>小</td>
<td>小</td>
<td>小</td>
</tr>
<tr>
<td>ニセアカシア</td>
<td>強風地、寒冷地は不適当</td>
<td>さし木</td>
<td>良</td>
<td>良</td>
<td>大</td>
<td>中</td>
<td>大</td>
<td>小</td>
<td>中</td>
<td>小</td>
</tr>
<tr>
<td>イタチハギ</td>
<td>適応性は最も高い</td>
<td>支木・まき</td>
<td>良</td>
<td>良</td>
<td>大</td>
<td>中</td>
<td>大</td>
<td>小</td>
<td>小</td>
<td>中</td>
</tr>
<tr>
<td>ヤマハギ</td>
<td>イタチハギに準ずる</td>
<td>播種同上</td>
<td>不良</td>
<td>良</td>
<td>大</td>
<td>中</td>
<td>大</td>
<td>小</td>
<td>小</td>
<td>中</td>
</tr>
<tr>
<td>ハンノキ</td>
<td>乾燥に強い</td>
<td>植栽</td>
<td>良</td>
<td>中</td>
<td>大</td>
<td>大</td>
<td>大</td>
<td>小</td>
<td>大</td>
<td>中</td>
</tr>
<tr>
<td>ヤマハンノキ</td>
<td>高冷地に適する</td>
<td>同上</td>
<td>良</td>
<td>良</td>
<td>大</td>
<td>大</td>
<td>大</td>
<td>小</td>
<td>中</td>
<td>大</td>
</tr>
<tr>
<td>ヒメヤシャブシ</td>
<td>寒冷地以外には適する</td>
<td>同上</td>
<td>良</td>
<td>良</td>
<td>大</td>
<td>大</td>
<td>大</td>
<td>小</td>
<td>小</td>
<td>大</td>
</tr>
<tr>
<td>オオバヤシャブシ</td>
<td>大部分の荒廃地に適する</td>
<td>同上</td>
<td>良</td>
<td>不良</td>
<td>大</td>
<td>大</td>
<td>大</td>
<td>小</td>
<td>中</td>
<td>大</td>
</tr>
<tr>
<td>ヤマモモ</td>
<td>暖地に適する</td>
<td>同上</td>
<td>不良</td>
<td>良</td>
<td>大</td>
<td>大</td>
<td>大</td>
<td>中</td>
<td>大</td>
<td>大</td>
</tr>
</tbody>
</table>

図 6-2-15 粗梁積工の例

[参考 6.3] 等高線塹工

等高線塹工は、とくしゃ地帯の荒廃地に等高線に沿った溝を設け、斜面に振った雨水、雪等を山腹に停留、吸収させ、草木の生長を可能ならしめて土砂の流出を防止する工法である。
溝は等高線に沿って水平に掘るものとし、間隔は6〜12mを標準とする。溝には6〜12m間隔で間仕切士堤を設けるものとし、その堤高は谷川の溝の土堤より0.1m程度低くする。溝の断面は、山腹の傾斜、表土の状態を考慮し、貯留水が越流しないよう十分な断面とする。

溝が比較的規模な(0.6×0.6m以上)谷を横断する場合は、溝の横断後に谷側の堤防と同高の間仕切土堤を設けることを標準とする。

等高線壕工は、図6-2-16を参考に設計するものとする。

図6-2-16 等高線壕工の例
第7章 その他の水系砂防設備

第1節 その他の水系砂防設備の概要

その他の水系砂防設備は、表7-1-1に示したとおりであり、適切な施設を配置する。

解説
その他の水系砂防設備は、表7-1-1に示したとおりであり、流域の状況を勘案して適切な施設配置を行う。

表7-1-1 その他の水系砂防設備

<table>
<thead>
<tr>
<th>工種</th>
<th>田土工</th>
<th>帯工</th>
<th>護岸工</th>
<th>渓流保全工</th>
<th>水制工</th>
<th>遊砂地工</th>
</tr>
</thead>
<tbody>
<tr>
<td>目的</td>
<td>・渓床の侵食防止、流域堆積物の再移動防止により漬水を安定させる。</td>
<td>・渓床の侵食を防止する。</td>
<td>・山間部の平地や崩壊地を流下する渓流などにおいて、流水・流木の防除による渓床の侵食・崩壊防止。</td>
<td>・流水の流速の制御による貯留地の侵食防止。</td>
<td>・防波などにより渓流の一部を拡大して土砂を堆積させる。</td>
<td>・建設による流れの制御</td>
</tr>
<tr>
<td>配置</td>
<td>・反浸調のときでも渓床の侵食・崩壊の防止を行う。</td>
<td>・土砂の移動し、流速を低減することで土砂を堆積させる。</td>
<td>・堤防や堤防を計画として渓床の侵食を防止する。</td>
<td>・堤防の洗掘防止、保護する。</td>
<td>・渓岸防護を計画する。</td>
<td>・自然の地形を活かし、必要な箇所のみに砂防設備を適切に配置する。</td>
</tr>
<tr>
<td>施設効果</td>
<td>施設影響範囲の計画生産上砂量を計画生産抑制上砂量として評価する。床固工参照</td>
<td>床固工参照</td>
<td>床固工参照</td>
<td>床固工参照</td>
<td>施設影響範囲の計画生産上砂量を計画生産抑制上砂量として評価する。</td>
<td>施設影響範囲の計画生産上砂量を計画生産抑制上砂量として評価する。</td>
</tr>
<tr>
<td>設計</td>
<td>土石工・土木対策施設の床固工参照</td>
<td>土石工・土木対策施設の床固工参照</td>
<td>土石工・土木対策施設の床固工参照</td>
<td>土石工・土木対策施設の床固工参照</td>
<td>土石工・土木対策施設の床固工参照</td>
<td>土石工・土木対策施設の床固工参照</td>
</tr>
</tbody>
</table>
| 設計等の留意事項 | 田土工の高さは、通常の場所で5m程度以下である。 | 施設配置について、その天端を計画される渓床水位とし、落差を与えないとすることに留意する。 | 渓床工は土壁の破壊を防ぐために基準のものとして設ける。 | 自然の地形を活かしたとき、必要な箇所のみに施設を配置するように計画する。 | 田土工が設置される場所には、対岸が水衝部を防ぐことが多いので、対岸の高さなどに留意する。 | 田土工が建設される場所には、流出するおそれがある場合、土石工の配置を検討する。

（国河計 p181～184 より要約）
第Ⅳ編 参考資料 第8章 水系砂防での流木対策

第8章 水系砂防での流木対策

第1節 流木対策計画

水系砂防においても、必要に応じて流木対策を実施する。

解説

ダム貯水池対策、掃流域での渓流保全工区間など流木対策が必要な場合は、流木対策を実施する。

第2節 対象流木量

土石流、掃流区間など土砂の移動形態に対応して、計画流出流木量等の基本量を算出する。

解説

1 発生流木量

(1) 土石流区間

土石流区間では、土石流・流木対策計画に準じて発生流木量を算出する。

(2) 掃流区間

掃流区間では、渓岸侵食等で流木の発生が考えられるところで発生流木量を算出する。発生流木量は侵食面積に対象箇所の単位面積当たりの立木材積量を乗ずることにより求められる。

2 計画流出流木量

計画流出流木量は、発生流木量に流出流木率を乗じて求める。流出流木率は土石流区間では土石流・流木対策計画での0.9を用いる。掃流区間でも土石流・流木対策計画に準じて決定しても良いが、流木流出率を知り得る場合は、それを用いる。

3 計画流下許容流木量

計画流下許容流木量は、土石流区間では、土石流・流木対策計画に準じて決定しても良いが、明らかな許容量が知り得る場合は、それを用いる。

第3節 水系砂防での流木対策施設計画

流木対策施設配置計画では、掃流区間、土石流区間と土砂の移動形態に対応した計画を策定する。

解説

1 流木收支

(1) 土石流区間

土石流区間では、土石流・流木対策計画に準じて、土砂と一体となった流木の収支計算を行う。

(2) 掃流区間

掃流区間では、河道へ流出した流木は単独で流下するものと考える。

2 対策の考え方

(1) 土石流区間

土石流区間は土石流・流木対策計画に準拠して対策計画を策定する。
(2) 掃流区間

掃流区間では、上流の土石流区間からの流出流木や掃流区間で発生する流木に対する対策計画を策定する。掃流区間での対応は、次のように考えられる。

① 護岸工等による流木の発生の抑制
② 流木止め（掃流域の流木捕捉工）による流木の捕捉

掃流区間に設ける流木捕捉工の場合、流木止めにより捕捉される流木の量は、堆積木相互に隙間はあるが施設の付近ではある程度の重なりがあることを考慮して、堆砂面を流木が（一層で）全て覆いつくすものとして算定する。一方、捕捉される流木の投影面積は、流木の平均長さ \(\ell_{av} \) × 流木の平均直径 \(d_{av} \) の合計により算定される。

これらより、計画対象流木捕捉量を捕捉するために必要な流木止め上流の堆砂地または湛水池の面積 \(A_d \) は、次式により推定する。

\[
A_d \geq \sum (\ell_{av} \times d_{av})
\]

このとき、堆砂地または湛水池に堆積する流木実立積 \(V_{r2} \) は、下記の式で求める。

\[
V_{r2} \approx A_d \cdot d_{av}
\]

掃流区間においては、流木は土と分離して流水の表面を流下すると考えられるので、不透過型砂防堰堤の流木捕捉効果は無いものとする。

（流木対策指針（案）計画編（平成12年7月、建設省砂防課）p16）

第4節 掃流区間における流木対策施設

4.1 洪水、土砂量の規模等

<table>
<thead>
<tr>
<th>掃流区間河道内あるいはその付近に流木対策施設を設置する場合は、洪水、土砂流の規模等を考慮して洪水や土砂が安全に流下するように設計する。</th>
</tr>
</thead>
<tbody>
<tr>
<td>（土流設 p62）</td>
</tr>
</tbody>
</table>

解説

豪雨時に発生する洪水の規模等（設計流量、流速、水深、土砂混入率）は、原則として掃流区間として検討する。

洪水および土砂流の流速、水深等は土砂を含んだ流量を用いてマニング式等により算出するものとし、流木を含むことによる流速、水深等への影響は考慮しないものとする。なお、流木の流速は洪水、土砂流の表面流速にほぼ等しいと考えられるので平均流速の約1.2倍として計算する。（土流設 p62一部改）

4.2 流木捕捉工（掃流区間）の設計

4.2.1 透過部の高さ

<table>
<thead>
<tr>
<th>掃流区間の流木捕捉工の透過部の高さは、流木止めによる堰上げを考慮した水位に流木の捕捉に必要な高さを加えた値以上とする。</th>
</tr>
</thead>
<tbody>
<tr>
<td>（土流設 p63）</td>
</tr>
</tbody>
</table>

解説

透過部は転石により閉塞しないように設計するものとし、透過部の高さは流木止めによる堰上げを考慮した水位に流木捕捉に必要な高さを加えた高さ以上とする。その概念を図8-4-1に示す。これら
の決定の手順を以下に示す。なお、図中の記号については、\(D_s \)：流木止めによる堰上げを考慮した水位 (m)，\(\Delta H_s \)：流木捕捉に必要な高さ (m)，\(H_s \)：流木止め (透過部) の高さである。

図8-4-1 掃流区間に設置する流木捕捉工の透過部の高さ\((H_s) \)の模式図

1 堰上げ水位の計算

(1) 堰上げ前の水深 \(D_{ho} \)，平均流速 \(U_h \)

開水路形状：土砂混入流量により、マニング式等により求める。

堰形状：土砂混入流量により堰の公式で求める。

(土流設 p63)

図8-4-2 流木止めによる堰上げ水位

(2) 流木止め工による堰上げ高

掃流区間に流木止め工を設置する場合には、大部分の流木は土砂流、洪水の表面を流下するため、これを捕捉するための流木止め工の高さは流木止め工による堰上げを考慮した土砂流や洪水の水位よりも高いことが必要である。

なお、縦部材のみによる堰上げの水位は次式により算定できる。

\[
\Delta D_{ho} = \kappa_m \cdot \sin \theta_m \cdot \left(\frac{R_m}{B_p} \right) \frac{U_h^2}{2g}
\]
第Ⅳ編 参考資料 第8章 水系砂防での流木対策

ΔD_{h0}: 流木止め工縦部材による堰上げ高 (m), κ_m: 縦部材の断面形状による係数(鋼管で $\kappa_m \approx 2.0$, 角状鋼管で $\kappa_m \approx 2.5$, H形鋼では $\kappa_m \approx 3.0$ を用いる), θ_m: 縦部材の下流河床面に対する傾斜角(度), R_m: 縦部材の直径 (m), B_p: 縦部材の純間隔 (m), U_h: 上流側の流速 (m/s)

(土流設 p64)

(3) 堰上げ後水深 D_s

$$D_s = D_{h0} + \Delta D_{h0}$$

$$U_{hs} = \frac{Q}{D_s \cdot B_s}$$

Q: 設計流量 (m³/s), U_{hs}: 堰上げ後の平均流速 (m/s), B_s: 流下幅 (m)

(土流設 p64)

2 流木止め工の高さ(H_s)

土砂礫等による閉塞は無いものとし流木止め工の高さは, 堰上げ高を加えた水深 D_s に流木の捕捉に必要な高さ ΔH_s を加えたものとする. ΔH_s は流木捕捉時の流木のせり上がりを考慮して, 少なくとも最大流木径の 2 倍を確保する.

(土流設 p64)

![図8-4-3 閉塞の恐れのない場合の透過部の高さ](image)

4.2.2 透過部における部材の純間隔

流木捕捉工の透過部における部材の純間隔は, 透過部が転石で閉塞しない条件と流木を捕捉する条件を満足するものとする.

(土流設 p66)

解 説

1 掃流により移動する最大礫径

掃流区間を流下する最大礫径は限界掃流力による移動限界礫径を参考に次的方法により求める．

(1) 平均粒径に対する移動限界摩擦速度の 2 乗 U_{cm}^2

次式から求める．

$$U_{cm}^2 = 0.05 \cdot \frac{(\sigma/\rho - 1) \cdot g \cdot d_m}{d_m}$$

ここで, d_m: 河床材料の平均粒径 (m), σ: 砂礫の密度 (一般に 2,600〜2,650kg/m³), ρ: 泥水の密度 (一般に 1,000〜1,200kg/m³), g: 重力加速度 (m/s²)

(2) 摩擦速度の 2 乗 U^2

次式から求める
第Ⅳ編 参考資料 第8章 水系砂防での流木対策

\[U_*^2 = g \cdot D_{h0} \cdot I \]

ここに, \(D_{h0} \): 水深 (m), \(I \): 河床勾配

(3) 摩擦速度比の 2 乗 \(U_*^2 / U_{cm}^2 \)

(1), (2) の値を用いて求める。

(4) 図 8-4-4 の縦軸 \(U_*^2 / U_{cm}^2 \) が、(3) の \(U_*^2 / U_{cm}^2 \) に等しい点に対する \(d_i / d_m \) を求める。

\[\frac{d_i}{d_m} > 0.4 \cdot \frac{U_*^2}{U_{cm}^2} = \left[\frac{\log_{10} \left(\frac{19}{d_i/d_m} \right)}{\log_{10} 19} \right]^2 \cdot \frac{d_i}{d_m} \]

(5) 現地の最大転石と比較して、小さい方を最大粒径とする。

(土流設 p66)

図 8-4-4 粒径別限界掃流力

2 透過部の部材の純間隔

透過部が転石により閉塞しないために上で求めた最大転石が下記の条件を満足するように部材純間隔を設定する。

\[B_p \geq 2d_i \]

ここで, \(B_p \): 透過部の純間隔 (m), \(d_i \): 最大転石 (m)

流木を捕捉するために部材の純間隔は下記の式を満足する値とする。

\[\frac{1}{2} L_{wm} \geq B_p \]

ここで, \(L_{wm} \): 最大流木長 (m)

部材の純間隔は上記の条件を満足する範囲で選定する。

(土流設 p67)
4.2.3 全体の安定性の検討

流木捕捉工の安定性の検討にあたっては、流木捕捉工が流木等により完全に閉塞した状態でも安定であるように設計する。（土流設 p68）

解 説

掃流区間における流木捕捉工の安定性の検討は、原則として掃流区間の不通過型砂防堰堤によるものとする。なお、単独で設置される流木捕捉工の基礎部も含めた堰堤の高さは、堰堤高さ 5m 以下（床固工程度）を原則とするが、堰堤高さ 5m を超える場合は、以下の点に留意し検討するものとする。

・流木捕捉工の透過部の高さをできるだけ低くするように水通し幅を広く取り水深を低くする。
・基礎厚が厚く基礎天端と下流河床面に大きな落差が生じる場合や流木捕捉工の高さが高く越流水に大きな落差が生じる場合には、前庭保護工を検討し安定を確保する。

掃流区間において、流木止工が流木で閉塞された状態の場合は、図 8-4-5 に示すように静水圧が作用する。この場合、静水圧の大きさは透過部の閉塞密度 \(K_{hw} \) に影響を受ける。ここでは完全に閉塞された状態を想定して \(K_{hw} = 1.0 \) の静水压（水の単位体積重量 \(\gamma_w = 11.77 \text{kN/m}^3 \)）とする。掃流区間の透過型流木捕捉工の場合、礫による捕捉が生じないように設計するので、堆砂圧は考慮しない。（土流設 p68）

![図8-4-5 掃流区間の流木捕捉工の閉塞状況](土流設 p68)

\[P_r = \frac{r_o}{2} \left((H + D_r) \cdot K_{hw} \right) \]

※1 \(K_{hw} \): 透過部の閉塞密度に応じた静水圧係数（\(K_{hw} = 1.0 \)）

表 8-4-1 流木対策施設（掃流区間）の設計外力（自重を除く）

<table>
<thead>
<tr>
<th>堰堤高 5m 以下（基礎を含む）</th>
<th>平 常 時</th>
<th>土 石 流 時</th>
<th>洪 水 時</th>
<th>静水時</th>
</tr>
</thead>
</table>

（土流設 p69）

4.2.4 部材の安定性の検討

掃流区間の流木捕捉工の透過部を構成する部材は、水圧および流木と礫の衝突に対して安全であるように設計する。（土流設 p70）

解 説

土石流区間の流木捕捉工と同様に、透過部の構成断面は小さく重力式構造ではないので、部材の構造...
計算を行い、安全性を検証する。
流木の衝突による衝撃力は、第2章第5節5.2.1を参照されたい。

掃流区間において、透過部材の構造計算に用いる設計外力としての流木の衝撃力の算定にあたっては、流木の衝突の計算における流速は表面流速を用いるものとし、下記の式で求める。流木は長軸が水流の方向と平行に流下し衝突する場合を想定して衝撃力を計算する。

\[U_{ss} = 1.2U_s \]
ここで、\(U_{ss} \)：表面流速\((m/s)\), \(U_s \)：平均流速\((m/s)\)

4.2.5 透過部以外の設計

流木捕捉工の各部の構造の検討にあたっては、流木捕捉工が流木等により閉塞された状態においても安定であるように設計する。また、流木の衝突による衝撃力に対する安定も検討する。

解説
流木捕捉工の各部の構造（水通し断面、天端幅、下流のり、基礎、袖の構造、前庭保護工）の検討は、原則として掃流区間の不透過程砂防堰堤によるものとする。すなわち、流木捕捉工の各部の構造の検討にあたっては、流木止め（透過部）の上流側が流木等により安全に閉塞されて水が透過できない状態を想定して、不透過程砂防堰堤とみなして水通し断面、天端幅、下流のり、基礎、前庭保護工を設計する。

流木捕捉工は砂防堰堤の副堰堤にも設置することができる。
流木捕捉工の水通し断面は、透過部への流木の閉塞による土砂流・洪水流の越流に備えて原則として透過部の上に設ける。

解説

4.3 流木発生抑止工の設計

掃流区間の流木発生抑止工は渓岸侵食抑制機能を効率的に発揮し、洪水に対して安全であるように設計する。

解説
掃流区間の流木発生抑止工は、護岸工および渓流保全工と同じ位置に同様の機能を持つように設置するものであるので、設計は護岸工等にしたがう。
第9章 砂防設備の環境対応

第1節 生態系への配慮

1.1 砂防堰堤

1.1.1 生態系への配慮1(縦断方向の連続性の確保)

砂防堰堤の設計にあたっては、縦断方向の連続性の確保に努める。

解説

砂防堰堤は一般に高い落差を有するため、堰堤の設置にともない、流域内の生物（主に魚類および哺乳類）は渓流を縦断方向に移動しづらくなる。このため、砂防堰堤の設計にあたっては、生態系に配慮し、渓流の縦断方向の連続性を確保する必要がある。

そのための方策としては、透過型砂防堰堤の採用、魚道の設置が考えられる。

1 魚道設置が必要な場合

（1）現在の魚類の生息環境を分断する位置に横断構造物を設置する場合

（2）魚類が砂防堰堤・床固工等の構造物の下流に滞留し、その構造物が移動を阻害している場合

（3）現在は魚が生息していないが昔は魚が生息し、将来復元を考えている箇所

2 魚道設置が不要あるいは必ずしも必要とは言えない場合

（1）過去から現在にかけて魚が生息していたことがなく、将来にわたって魚が生息する可能性の低い箇所の場合

（2）魚が生息しているが、対象魚が河川を縦断的に移動する習性がない場合

（砂防渓流における魚道設置の手引き（案）（建設省土木研究所砂防部砂防研究室 平成10年2月より））

3 魚道の設計等の流れ（手順）は、図9-1-1 に示したとおりである。

4 透過型堰堤において、透過部断面を魚道として使用する場合の留意点は、次のとおりである。

① 魚道として使用する透過部断面に必要な流量が確保できるか。

② 魚道として使用する透過部断面は、魚道としての水理条件を満足しているか。

③ 魚道として使用する透過部断面への遡上が可能か。
第Ⅳ編 参考資料 第9章 砂防設備の環境対応

第Ⅳ-9-2

図9-1-1 魚道の設計等の流れ
1.1.2 生態系への配慮2 (横断方向の連続性の確保)
砂防堰堤の設計にあたっては、横断方向の連続性の確保に努める。

解説
砂防堰堤の側壁護岸の設置等にともない、流路と渓岸が遮断され、動物の水飲場や移動路等が確保できない場合がある。このため、砂防堰堤の設計にあたっては、生態系に配慮し、渓流の横断方向の連続性を確保する必要がある場合がある。

1.2 床固工
床固工においても、砂防堰堤準じて環境への配慮を行う。

解説
床固工における環境への配慮事項については基本的に砂防堰堤と同一であるが、床固工は砂防堰堤に比べ落差が小さいため、魚道は、流路内（全断面も含む）に設けられることが多い。
魚道付床固工の基本的な考え方は、次のとおりである。
(1) 本堤と垂直壁の間隔
本堤と垂直壁の間隔については、魚道として必要な勾配を確保できる長さとする。
(2) 水叩きの勾配
水叩きの勾配については、魚道として必要な勾配と同様な勾配を付けるものとする。
(3) 水叩きの厚さ
水叩きの厚さについては、魚道が無い場合の有効落差と越流水深の合計から求まる値を用いる。
(4) 本堤の根入れ
本堤の根入れについては、落差差流側の計画河床高から、水叩きの厚さ分をとるものとする。
(5) 垂直壁の根入れ
垂直壁の根入れについては、水叩き下面から、砂礫地盤は1.5m、岩盤の場合は1.0mをとるものとする。
(6) 側壁の根入れ
側壁の根入れは、水叩き下面と一致させるものとする。
(7) 魚道の設置
以上により変形した床固工に、魚道の構造を付加するものとする。
(8) 側壁の平面形状
全面魚道化にした場合、本堤部で跳水が発生しにくいため、通常の床固工のように側壁が上流側で広がる構造にする必要はない。

1.3 護岸工
護岸工の設計にあたっては、水際の多孔性、横断方向の連続性、瀬・淵の確保等の必要な措置を講ずるものとする。

解説
護岸工における渓流生態系への配慮については、様々な事項が考えられるが、主なものについて次に示す。ここに示すもの以外であっても、渓流生態系の保全に寄与と考えられるものであれば、積
極的に取り組むものとする。

(1) 水際の多孔性の確保
水際の多孔性を確保するためには，使用するブロックの工夫，捨石の採用等が考えられる。

(2) 横断方向の連続性の確保
横断方向の連続性を確保するためには，護岸の緩傾斜化，捨石の採用等が考えられる。

(3) 瀬・淵の確保
瀬・淵を確保するためには，あらかじめ河床変動を許容する計画とし，護岸根入れを，河床変動を考えた深さまで下げることが考えられる。

図9-1-2 生態系への対応のイメージ

2. 護岸工における環境への配慮については，多くの場合生態系，景観，渓流利用などについて総合的に検討の上，護岸を整備するよう努めなくてはならない。

1.4 渓流保全工

渓流保全工においては，環境への配慮に対しての措置を講ずるものとするが，その場合，床固工，護岸工など複数の工種について総合的に措置する。

解説
渓流保全工の計画において，床固工，護岸工等を計画するときは，計画段階での方針(たとえば，河床変動をどの程度許容するか)を満足する施設を設計しなければならない。

床固工，護岸工等の各工種の組み合わせにより，環境への配慮が行きとどいた渓流空間を得ることが重要である。

第2節 景観等への配慮

2.1 基本理念

砂防関係事業では「防災機能の確保」を基礎とし，「時間軸の考慮」と「地域の個性尊重」を加え，この3つの基本理念に基づいて景観形成に取り組む。

（砂防事業における景観形成ガイドライン（平成19年2月 国土交通省砂防局（以下「景観ガイドライン」と呼ぶ）））

解説
1. 基本理念
（1）防災機能の確保

砂防設備の整備に際しては、国土保全の観点から防災機能を確保した上で、周辺環境との調和を図っていく。（景観ガイドライン p7）

（2）時間軸の考慮

砂防設備は、可能な限り長期にわたって機能を発揮することが要求されるため、砂防設備本体、砂防設備周辺における植生等の状況、周辺の土地利用状況、景観に対する認識の変化など長期にわたる時間の経過を考慮する必要がある。このため、時間軸の考慮を基本理念の一つとする。

（3）地域の個性の尊重

砂防関係事業にかかわる施設について、地域の個性を尊重しつつ良好な景観を保全・創出していくことを基本理念の一つとする。

図9-2-1 景観形成の基本理念のイメージ
2.2 景観形成の基本方針

砂防関係事業における景観形成の基本方針は、基本理念である「防災機能の確保」「時間軸の考慮」「地域の個性尊重」に基づいて、施設の目的を具現化した形状として機能美を尊重するとともに、周辺の地形や植生などに調和させ、防災機能が景観形成にも貢献していることを表現し、後世に残る砂防美として地域に定着させるものとする。

解説

1 機能美の尊重

砂防設備は、施設に要求される性能に対して機能的に明確な形状で、生態系を含めた自然環境にも配慮し、時間の経過とともに周辺環境に馴染む材料を選定し、砂防美あふれるデザインとする。

砂防設備は河川砂防技術基準をはじめとする技術基準との整合を保って防災機能を確保する必要がある。その上で、土砂災害の防止とともに、生態系を含めた自然環境にも配慮し、長寿命で風雪等に耐えながら時間の経過とともに周辺環境に馴染んでいく形状及び材料を選定する。

2 砂防設備と周辺環境との調和

砂防関係事業における景観形成は、砂防設備が眺められることにより「安心感を与える」ことを基調とする。このため、砂防設備の配置および規模は、施設本体や施設周辺における植生等の状況、周辺の土地利用状況、景観に対する認識の変化を考慮しつつ、地形の特徴を十分に活かして、生態系など周辺環境との調和を図るものとする。ただし、自然環境および歴史的・文化的要素の保全を目的とする条約、法律、条例に基づく指定地や、生態系等の自然環境資源および歴史的・文化的要素を含んだ文化財等の人文景観資源の存在など、特に現状の景観を保持する必要があり人工構造物の介入が許されない場合がある。このとき、元地形を復元できる工法や施設を目立たせない工夫が必要となる。
3 景観形成の配慮事項

後世に残る砂防美として地域に定着させるためには、景観形成の基本方針が具現化されるよう事業の各段階において適切な対応を行う必要がある。

このため、調査、計画、設計、施工、管理の各段階において景観形成のための配慮事項を取り入れるものとする。

（景観ガイドライン p16）
図9-2-3 景観形成のための設計手順

2.3 設計の対応

砂防設備は、修景・利用の目標（目的）を明らかにした上で景観等の対応にあたる。

解 説

1 砂防堰堤、床固工

砂防堰堤の修景上の目的は、その位置的条件に支配される場合が多いものと考えられる。その対応の例を以下に示した。
・道路から見える施設 →「自然にとけ込むものをつくる」
　周辺景観と違和感がないことを目指し、周囲の景観にとけ込むように配慮する。

・人家に近い施設 →「自然にとけ込むものをつくる」
　威圧感なく、親しみやすいものを目指し、周囲の景観にとけ込むように配慮する。
→「見る価値のあるものを作ること」
　親しみやすいものを目指し、地域住民に安心感を与える。

・キャンプ場周辺等人の集まるところの施設
→「自然にとけ込むものをつくる」
　周辺景観と違和感がないことを目指し、周囲の景観にとけ込むように配慮する。
→「見る価値のあるものを作る」
　親しみやすいものを目指し、安心感を与える。
　・景色上のアクセントをつけ、新たな良好な景観を創造する。
　・砂防学習ゾーンの施設として位置づけ、砂防の啓発に利用する。

修景への配慮の主な例としては、図9-2-4のようなものがあげられる。
第Ⅳ編 参考資料 第9章 砂防設備の環境対応

①植物による緑化：鋼製箱枠の利用 ②堤体を樹木で隠す：堤体前面（側壁の裏等）の植樹等
③堤体前面に石を積む：巨石積み ④堤体に石を張り付ける：石張，石積
⑤堤体前面に盛土をする：修景盛土（掘削土等を利用）
⑥人工物：化粧型枠，パネル等 ⑦形状を工夫する：ラウンディング

図9-2-4 堤堤の修景の例

2 護岸工

護岸整備における景観や渓流利用への配慮事項としては、様々なものが考えられるが、その内どこ
一例を次に示す。ここに挙げるもの以外であっても、景観や渓流利用への配慮事項として考えられる
ものであれば、積極的に取り組むものとする。
(1) 景観への配慮

景観への配慮としては、護岸を隠す（隠し護岸，捨石等）、周辺の状況になじませる（護岸法線の
工夫，護岸の植栽，自然石の利用，使用するブロックの工夫等）が考えられる。
(2) 渓流利用への配慮

渓流利用への配慮としては、親水性の確保（護岸の緩傾斜化・階段・斜路の設置等）、川を見る
視点場の確保等が考えられる。
第Ⅳ編 参考資料 第9章 砂防設備の環境対応

図9-2-5 景観・渓流利用の対応のイメージ

3 渓流保全工

渓流保全工においては、環境への配慮に対しての措置を講ずるものとするが、その場合においては、床固工、護岸工など複数の工種について総合的に措置する。