

誰もが食べている化学物質 ~食品の加工貯蔵中の化学変化と安全性~

$$H_2N$$
— C — $COOH$
 CH_2
 $C=O$
 HO
 H
 OH
 H
 OH
 H
 OH
 H
 OH
 H
 OH
 H
 OH
 H
 OH

委員 村田 容常

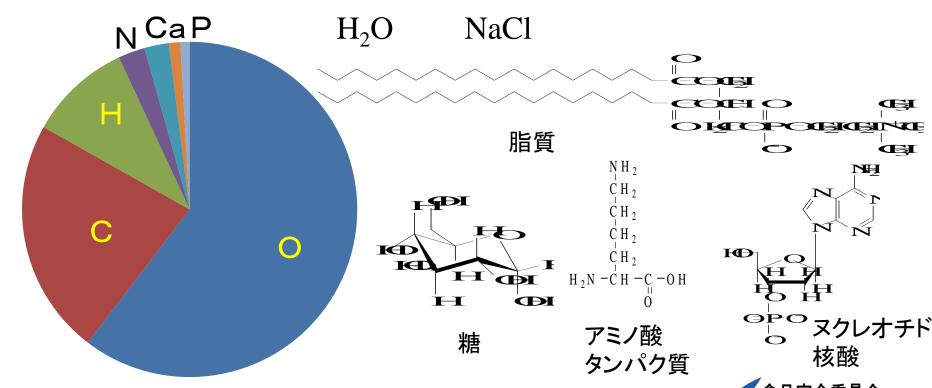
背景と目的

認知されるリスク(主観)と実際のリスク(客観)に違いがある

- ゼロリスクはない。
- リスクには量、確率が重要

化学物質という言葉という言葉に惑わされないでほしい。

天然物でも人工合成物でも、リスクはある。


食品の加工貯蔵中に物質は変化している。

本日の内容

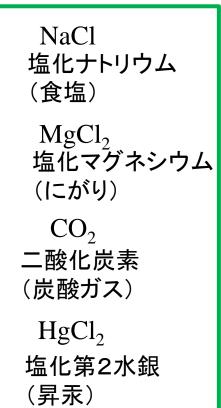
- ・ 化学物質とは
- ・生物から食物へ(加工貯蔵と物質変化)
- ・ 化学物質の安全性評価
- アクリルアミドの健康影響評価
- 人間の感覚と安全性

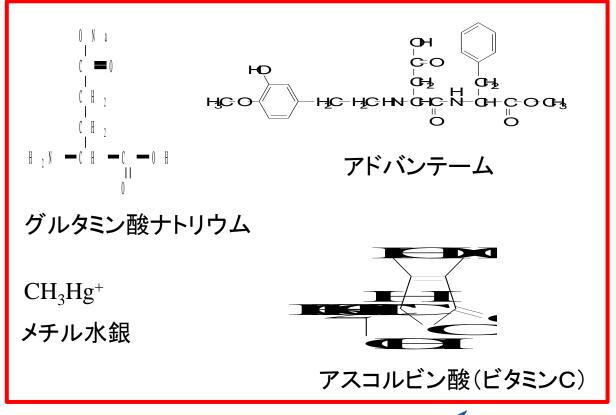
化学物質とは

- ・物質を化学的性質を有するものとして見たときのよび方
- ・生物は化学物質から成り立っている
- •構成元素C, O, H, N, P, Ca、など

化学物質の分類

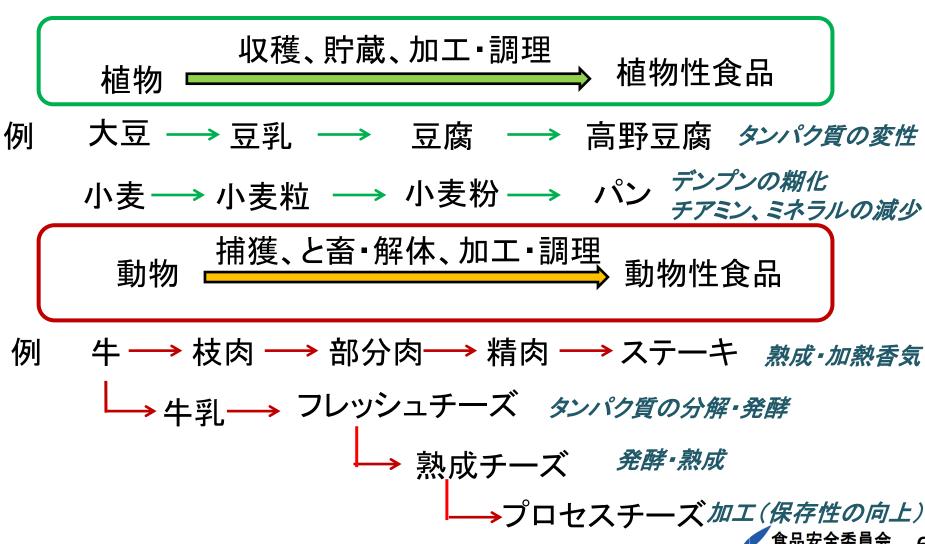
無機化合物と有機化合物


Organic:有機:生物


Inorganic

•生合成と化学合成

(無機化合物)

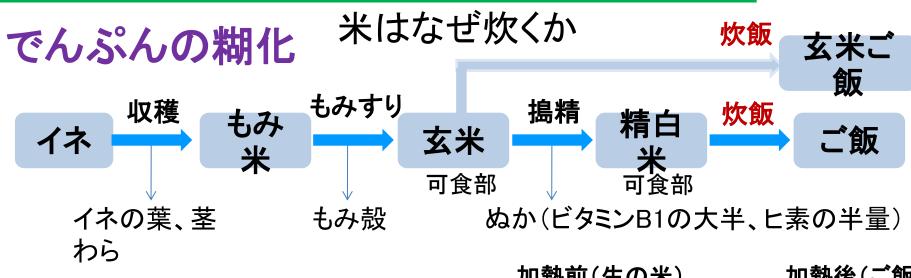

(有機化合物【生物が作ったもの→人間も作る】)

食物の原料は生物

生物に含まれる物質は、食物になる過程で量的質的に変化する

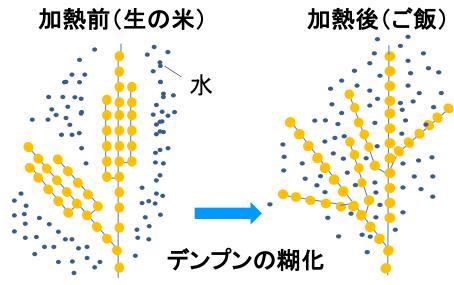
食品の加工貯蔵と物質変化

- ・成分の性質変化 デンプンの糊化、タンパク質の変性 (栄養、嗜好性、安全性)
- 成分の減少ビタミンやミネラルの減少(栄養、安全性)
- ・新たな成分の形成 成分間反応


酸化:不飽和脂肪酸と酸素 (安全性、品質)

メイラード反応:アミノ酸と糖

(嗜好性、品質、安全性)

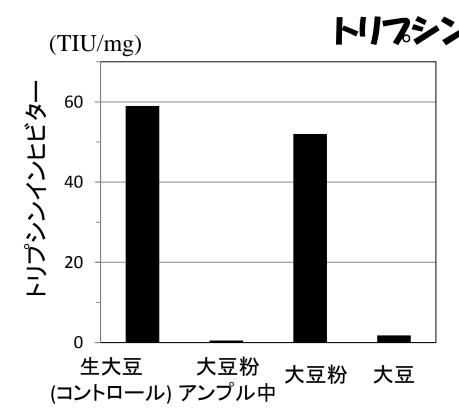


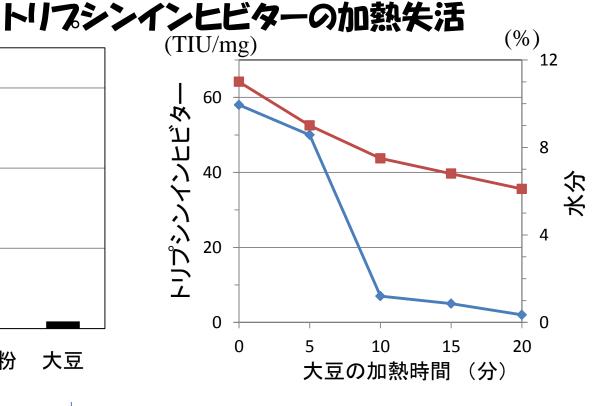
加工貯蔵中の物質変化(1)イネからご飯へ

米はエネルギー源 エネルギーの元はデンプン 生のデンプン(生の米)は消化吸収されない 加熱して初めて消化酵素の作用を受ける パンを作るときにも必ず焼く(加熱する)

加熱には殺菌効果もある

消化吸収されにくい


消化吸収されやすい



加工貯蔵中の物質変化(2)

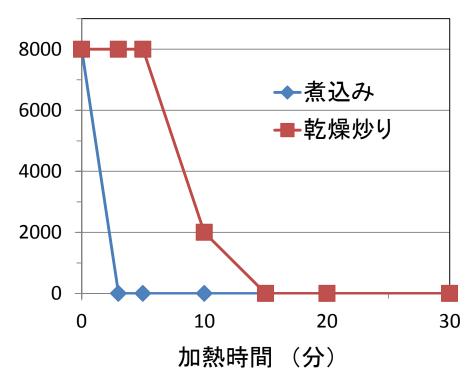
性状の変化

ダイス中のトリプシンインヒビターは消化吸収阻害をもたらす

150°C、20分

→ 失活するには水分が必要

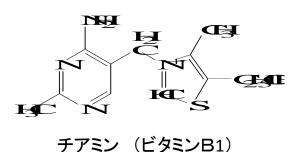
盛永宏太郎、日食工誌、49,182-187 (2002)を改変

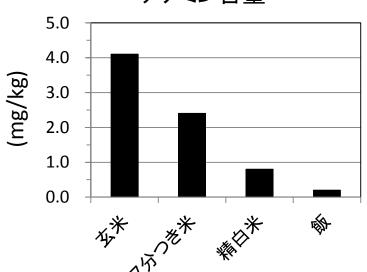

性状の変化(2)

平成18年 白インゲン豆のダイエット法

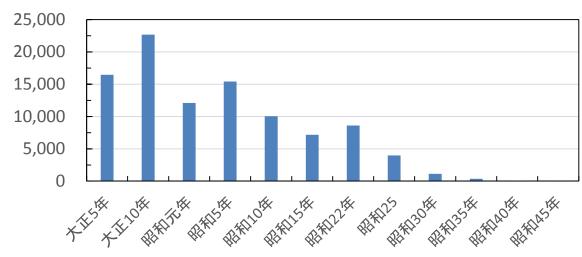
嘔吐、下痢などの健康被害

試料	種類	レクチン活性
事例 (未調理)	白花豆	8000
事例 (調理済み)	白花豆	32000
事例 (調理済み)	不明	8000


レクチン活性


林原亜樹ら、福岡市保健環境研究所報、32、101~104 (2006)

加工貯蔵中の物質変化(3)


含量の変化

チアミン含量

脚気による死亡者数

無機ヒ素含量

加工貯蔵中の物質変化(4)

新たな成分の形成

酵素反応 **→** (発酵)

O-R2

OH.

HO

紅茶 テアフラビン (オレンジ)

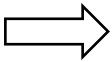
ビールの<mark>苦味</mark> イソフムロン

H₂N — C — COOH | | アスパラギン酸 CH₂ (アミノ酸) C=O | NH₂

$$CH_2$$
 \parallel
 CH
 \downarrow
 C
 \downarrow
 C
 \downarrow
 NH_2

アクリルアミド (毒性)

化学物質の安全性の基本

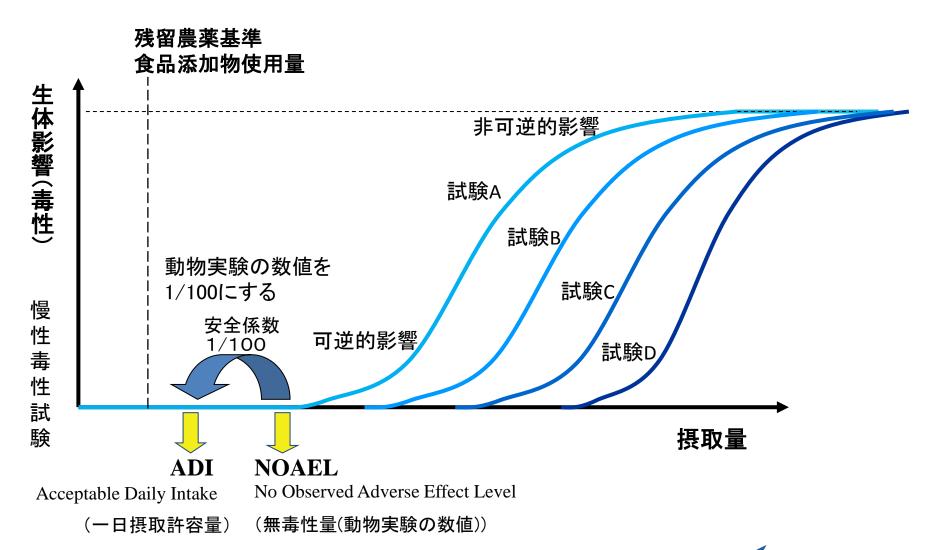

- ゼロリスクはない。
- リスクには量、確率が重要

人間が新たに意図的に使う物質 食品添加物 残留農薬


(汚染物質)

従来(昔)からの食べ物 (汚染物質)

ヒ素、重金属、アクリルアミド



科学的評価と管理

どんなものも毒か毒でないかは量で決まる

少量の毒物は問題ない

ジャガイモ 一般的に安全な食品、重要な食資源

エネルギー源(デンプン)

ビタミンCの供給源 (穀類や豆はビタミンCを含まない)

ミネラル(カリウム)

はい)
Gc ^{1β3} Gal ^{1β}
Rha

Rha α -ソラニン

ジャガイモ中にはソラニン(グリコアルカロイド)という毒物が含まれている。

芽に多いが、皮や中身にもある。

ジャガイモの部位	グリコアルカロイド含量 (mg/kg)
皮をむいたイモ	46
皮	1430
芽	7640
葉	9080

J. Agrc. Food Chem., 46, 5097 (1998)

アセチルコリンエステラーゼ阻害物質 (殺虫成分) 加熱により減少しない

「ソラニンやチャコニンを50 mg(0.05 g) 摂取すると症状が 出る可能性があり、150 mg~300 mg(0.15 g~0.3 g) 摂取 すると死ぬ可能性があります」

(農林水産省HP)

摂取量が重要

ジャガイモを食べることは問題ない。

しかし

ジャガイモばかり大量に食べることはよくない。

タマネギが食品添加物だったら

Thomson, M. et al.; Effects of aqueous extract of onion on the liver and lung of rats. Journal of Ethnopharmacology, **61**, 91-99 (1998).

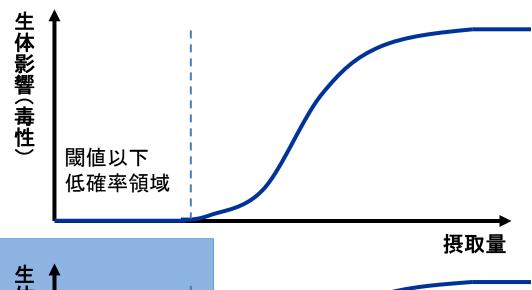
ラットにタマネギ抽出物 50mgタマネギ相当/kg, 500 mgタマネギ相当/kg 毎日経口および腹腔内投与 4週間

病理組織学検査

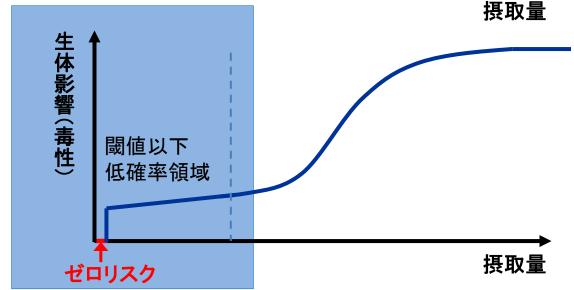
25 mg/人

経口 肝臓に空胞化と変性の兆候、細胞間間隙の拡大等 500 mg/kg 50 mg/kg 変化なし NOAEL 50 mg/kg, LOAEL 500 mg/kg 安全係数100とすると ADI 0.5 mg/kg 体重50 kgとすると

カレー5割、シチュー2割、サラダ3割とすると

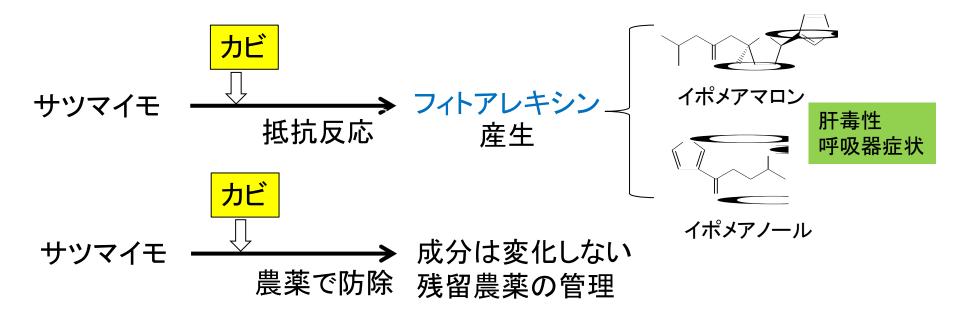

カレーへの使用基準は 25 x 0.5 x 0.8 = 10 mg 以下 サラダへの使用基準は

25 x 0.3 x 0.8 = 6 mg 以下


ほんとうの「食の安全」を考える 畝山智香子著

人間の認識とのギャップ

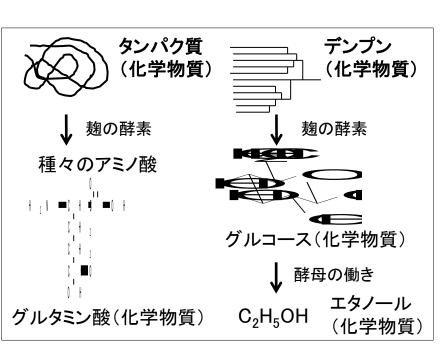
実験事実



イメージ

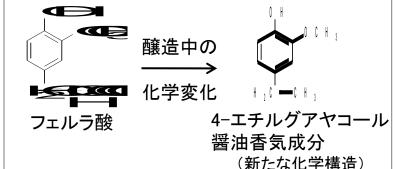
自然なら安全か

サツマイモ ヒルガオ科サツマイモ属
一般的に安全な食品、重要な食資源
エネルギー源(デンプン)
ビタミンCの供給源 ミネラル(カリウム) 食物繊維に富む
ソラニンなどのグリコアルカロイドは作らない


全ての食べ物は化学物質からできている

人間、動物、植物、微生物 皆、化学物質からできている。 加工貯蔵調理の過程で新たな成分もできる。

人工合成物(人間が作った化学物質) 天然物(自然界に存在する化学物質)


しょう油

大豆や小麦の成分(化学物質)が変化してできた調味料

しょう油に含まれる香味成分(化学物質)

グループ名	化合物	グループ名	化合物	グループ名	化合物
炭化水素	38種	フェノール	17種	含N化合物	8種
アルコール	30種	フラン	16種	含S化合物	15種
エステル	45種	ラクトン	10種	チアゾール	4種
アルデヒド	24種	フラノン	5種	テルペン	3種
アセタール	5種	ピロン	5種	その他	3種
ケトン	24種	ピラジン	30種		
有機酸	26種	ピリジン	7種		

(醸造物の成分、日本醸造協会)

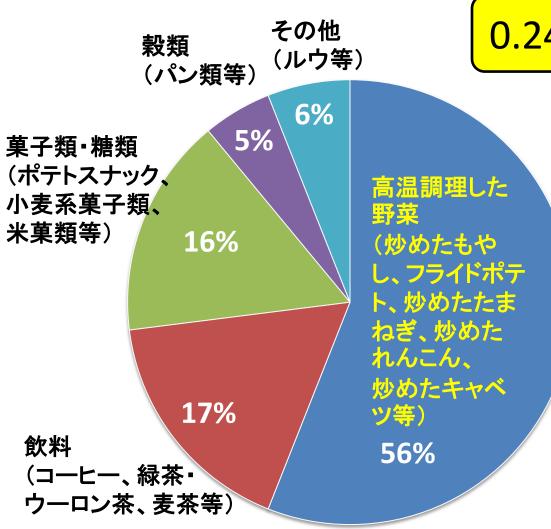
加熱調理により生じる有害物質もある

遺伝毒性発がん物質の形成

ヘテロサイクリック芳香族アミン

焼き肉、焼き魚

/ 糖 加熱 Y Z N CH₃ アミノ酸 クレアチニン X N


アクリルアミド

炒めた野菜(炒めもやし、フライドポテト)

飲料(コーヒー、茶)

菓子類、糖類

日本人のアクリルアミドの推定摂取量と摂取食品群

0.240 μg/kg 体重/日

推定摂取量 =Σ(推定食品摂取量× 推定濃度)

H24年国民健康・栄養調査 データ (24,293名の食事摂取量データ、体重)

農林水産省・厚生労働省 等の食品中のアクリルアミ ド濃度報告値(H26年11月 に公表された野菜の新た なデータを含む)の平均値

アクリルアミド推定摂取量の海外との比較

国•地域	推定平均摂取量 (μg/kg体重/日)
日本(2015年)	0.240
香港(2013年)	0.21
EU(2015年)	0.4~1.9
カナダ(2012年)	0.157~0.609
オーストラリア・ニュージーランド(2014年)	1 ~ 4
国際機関(JECFA)(2011年)	1

日本人におけるアクリルアミド摂取量は、海外と比較して同程度または低い値。

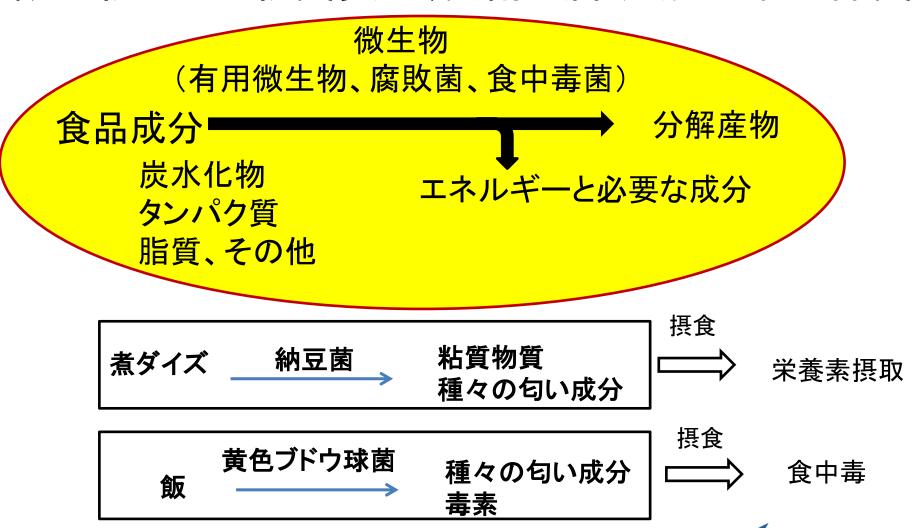
アクリルアミドのMOE (発がん影響)

影響指標と BMDL ₁₀ 値 (mg/kg体重/日)		MOE	
ハーダー腺腫/腺 がん 雄マウス BMDL ₁₀ : 0.17	モンテカルロ シミュレーショ ンによる推定	0.154 (中央値)	1,104
		0.261 (95パーセンタイル値)	651
		0.166 (平均値)	1024
	点推定	0.240	708
乳腺線維腺腫 雌ラット BMDL ₁₀ : 0.30	モンテカルロ シミュレーショ ンによる推定	0.154 (中央値)	1,948
		0.261 (95パーセンタイル値)	1,149
		0.166 (平均値)	1,807
	点推定	0.240	1,250

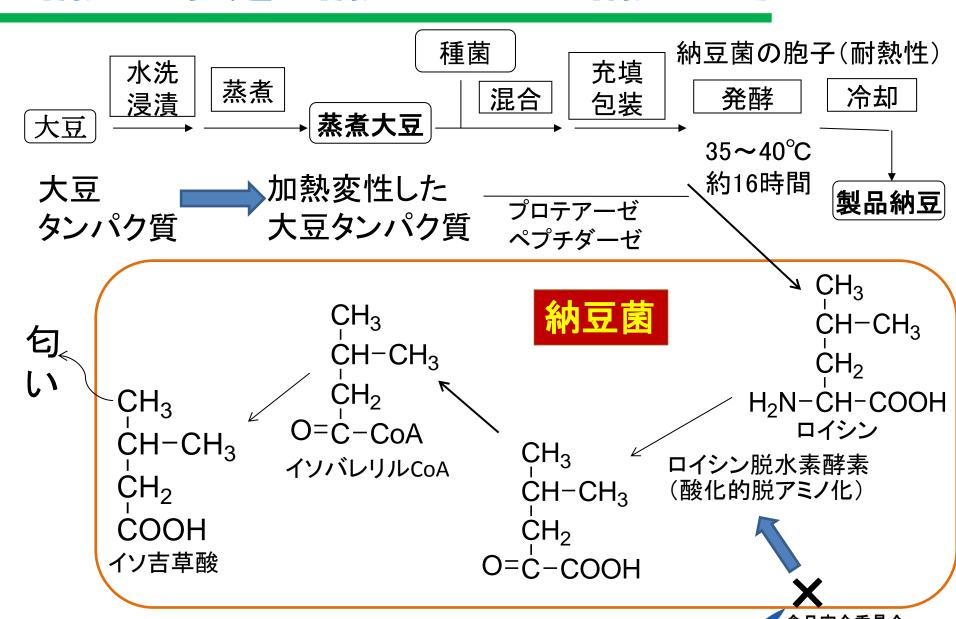
MOE = 推定摂取量/BMDL₁₀

値が大きければ気にしなくてよい

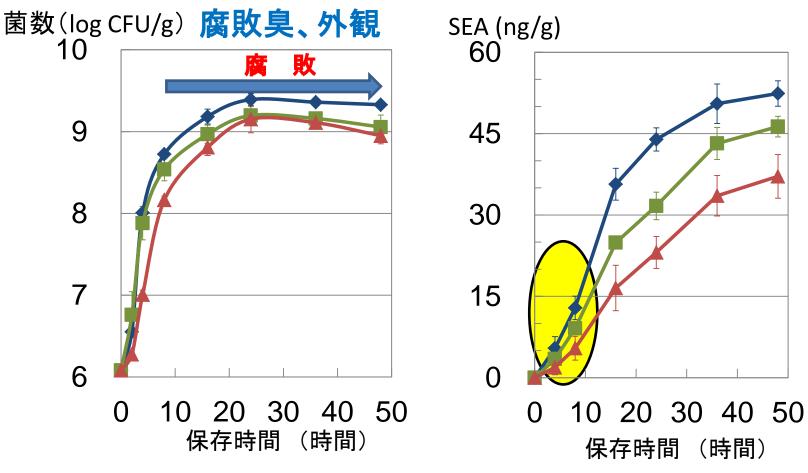
アクリルアミドのリスク評価


- 非発がん影響:極めてリスクは低い。
- 発がん影響

ヒトにおける健康影響は明確ではないが、動物実験の結果及び日本人の推定摂取量に基づき、公衆衛生上の観点から懸念がないとは言えないと判断


 ALARA(as low as reasonably achievable)の原 則に則り、合理的に達成可能な範囲で、でき る限りアクリルアミド摂取量の低減に努める 必要あり

人間の感覚と安全性


微生物による物質変化;発酵と腐敗(安全性と品質)

納豆の製造と納豆菌による納豆の匂い

ご飯中の黄色スドウ球菌毒素産出

匂わないが毒素は産生している

科学的管理が必要

まとめ

- 食べ物は化学物質からできている。
- ・食品加工・調理や貯蔵中に物質は量的、質的に変化している。
- 人間が意図的に使用するものは、安全性を科学的に評価し、管理することで安全性を確保している。
- 昔から食べているものは、食経験により安全性が確保されている。
- 人間の感覚だけでは安全性は確保できない。