

処分場周辺の土質・地質構成表

時	代	地 層		記 号	層相
			盛土層1(造成盛土)	В1	田などの粘性土、道路盛土等
	完新	盛土層 (覆土層)	盛土層2(覆土)	B2p	ピート・ピート混じり土主体
				B2c	粘性土主体
第				B2s	砂岩等岩塊混じり土主体
			盛土層3(掘削残土)	ВЗр	ピート・ピート混じり土主体
担紀		埋立廃棄物層	廃棄物層1	Wa1	コンクリートガラやがれき類を 主体とした産業廃棄物
和品			廃棄物層2	Wa2	金属片・ピニル片・廃プラスチック等を 主体とした産業廃棄物
		崖錐堆積物	崖錐堆積物	dt	砂や礫などの土砂

時	代			地 層	記 号	層相
			河成堆積物	砂層1	As1	砂・砂質土
		完 沖	谷底堆積物	シルト層1	Ac1	シルト・有機物混じりシルト・ 粘性土
第	完			有機質土層	Ao	有機質土・有機質粘土
四	新	積		ピート層	Aρ	ピート(高有機質土)
紀	世	層		シルト層2	Ac2	シルト・有機質シルト・有機物 混じりシルト
			河成堆積物	砂層2	As2	砂・シルト質砂・粘土質砂
				シルト層3	Ac3	砂質シルト・砂質粘土
				砂層3	As3	シルト混じり砂・礫混じり砂 粘土混じり砂

層相 黄白色の粗粒砂岩 本地域で最上部に分布 凝灰質砂岩3 φ数cmの安山岩角礫を伴う 級化層理が発達した火山礫凝灰岩 火山礫凝灰岩3 全体的に風化した中粗砂岩 凝灰質砂岩2 φ数cmの安山岩角礫を伴う 級化層理が発達した火山礫凝灰岩 火山礫凝灰岩2 凝灰質砂岩1 全体的に風化した中粗砂岩 φ数cmの安山岩角礫を伴う 級化層理が発達した火山礫凝灰岩 火山礫凝灰岩1 貝化石を伴う細粒〜中粒砂岩 固結度も高く割れ目は少ない 旗立層 凝灰質砂岩

図2 モニタリング地点増設位置(断面図)

観測井戸の設置方法

観測井戸の設置

a. 掘削

機械ボーリングにより掘削径 φ 66mmオールコアによる掘削を行う。

堀止め深度は、浸透水観測井戸・地下水観測井戸ともに、当該地の基盤である凝灰質砂岩 (HSs) を2m程度確認し掘り止めとする。

b. 拡孔

オールコアにより地層を確認した後、観測井戸設置深度まで拡孔を行う。浸透水観測井戸&については、 ϕ 146mm、地下水観測井戸&の浅部については、 ϕ 165mmに、それ以外の地下水観測井戸は、 ϕ 116mmにて拡孔を行う。

c. 原位置試験

(イ)現場透水試験

観測井戸設置対象となる帯水層を対象として現場透水試験を行う。現場透水試験は、ケーシング法により実施する。

(口)地下水検層

調査孔について、地下水検層(トレーサーによる地下水流動検層)を行う。検層 方法は、電気抵抗測定による方法とする。トレーサーとして食塩を用い、孔内水の 電気抵抗を経時的に測定を行い、地下水流動区間の把握を行う。

d. 観測井戸の設置

(イ)浸出水観測井戸⑧

廃棄物層・盛土層を対象とした観測井戸設置を行う。観測井戸は、SUS80Aとする。 スクリーンの周囲には、砂利を充填する。表層部は、セメントミルクを充填し、 雨水等の観測井戸への浸透を防止する。

(ロ)地下水観測井戸①、③(浅部・深部)

観測井戸は、SUS50Aとする。ただし、③ (浅部) については、SUS100Aとする。スクリーンの周囲には、砂利を充填する。表層部は、セメントミルクを充填し、雨水等の観測井戸への浸透を防止する。

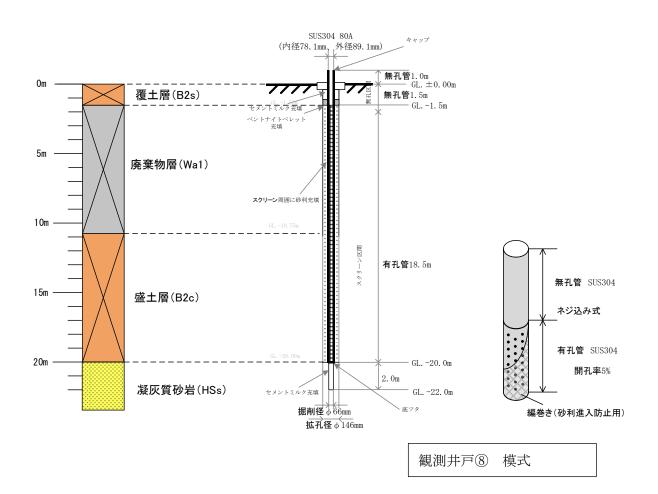
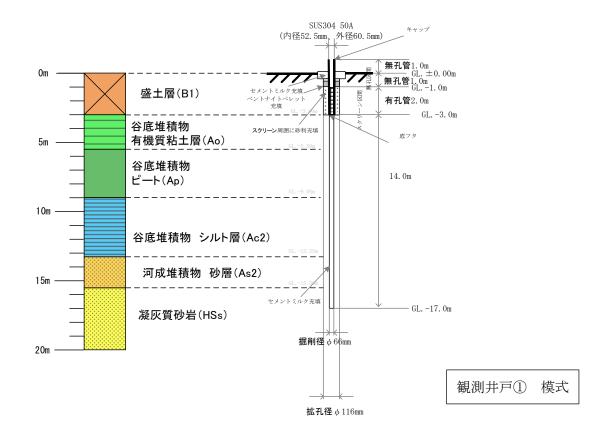



図3 浸透水観測井戸 模式

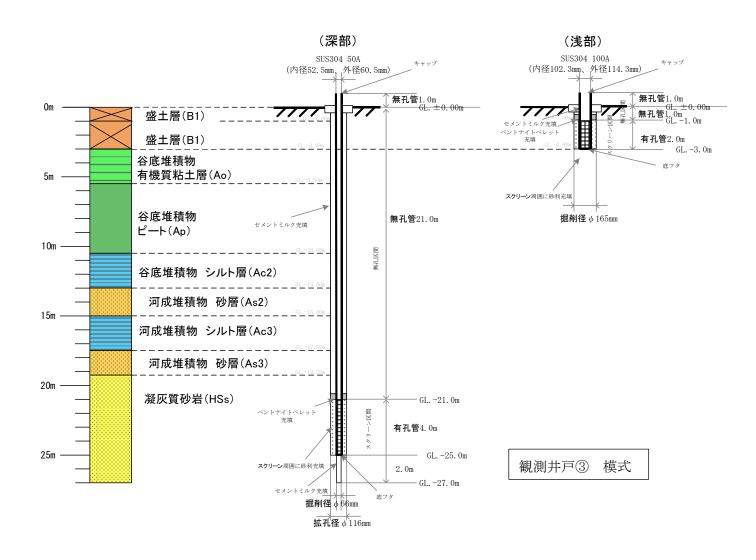


図 4 地下水観測井戸 模式