プルサーマル女川3号勉強会

平成21年9月5日九州大学 出光一哉

発電用軽水型原子炉施設に用いられる 混合酸化物燃料について(1/3MOX報告書)

	1/3MOX報告書	東北電力女川3号炉
プルトニウム含有率 (ペレット最大)	約13%	約10%
核分裂性プルトニウム 富化度 (ペレット最大)	約8%	約6%
炉心装荷率	1/3程度まで	1/3 228体/560体 10944/33600本
最高燃焼度 MWd/t	45,000 ウラン燃料を越えない範囲	40,000

従来の設計を大幅に変更することなしに使用可能

発電用軽水型原子炉施設に用いられる 混合酸化物燃料について(1/3MOX報告書)

- 一留意点一
- ・ペレットの融点及び熱伝導度が低下する
- ・ペレットのクリープ速度が増加する
- 核分裂生成ガス放出率がウランペレット より若干高め
- ・ペレット内のプルトニウム含有率の不均 一が製造時に生じる可能性がある

本日の主要論点

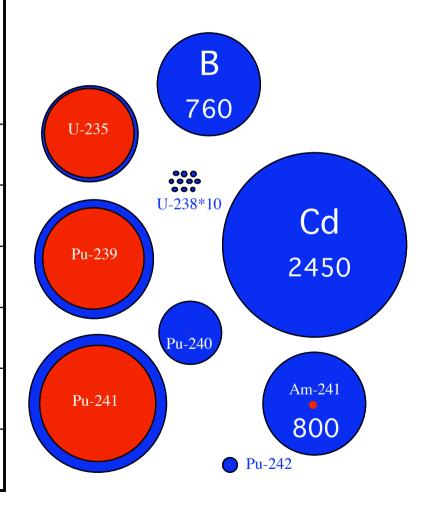
- Pu富化度
- 制御棒の安全裕度
- Puスポット
- 核分裂生成ガス放出
- 海外での実績
- 使用済みMOX燃料の今後について
- 最終処分について

プルトニウム含有率と 核分裂性プルトニウム富化度

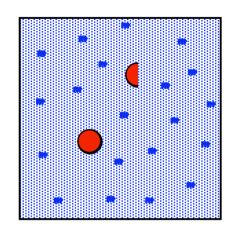
• プルトニウム含有率

プルトニウムの全重量 (%) ウランとプルトニウムの全重量

• 核分裂性プルトニウム富化度

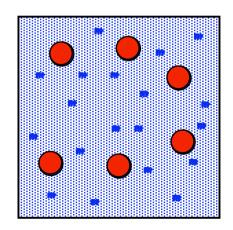

核分裂性プルトニウムの全重量_(%)ウランとプルトニウムの全重量

核分裂性プルトニウム: Pu-239、 Pu-241

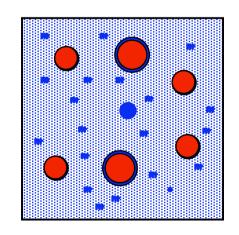

非核分裂性プルトニウム: Pu-240、 Pu-242

ウランとプルトニウムの同位体

核種	熱中性子吸収断面積 (核分裂断面積) バーン
U-235	680 (577)
U-238	3 (0.0005)
Pu-239	1017 (741)
Pu-240	289 (0.08)
Pu-241	1378 (950)
Pu-242	19 (0.2)



燃料の核分裂能力(1)

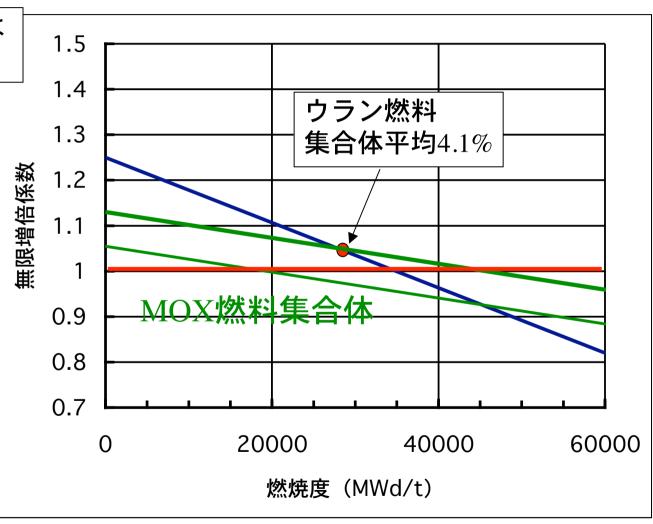


天然ウラン U-235 0.72% 軽水炉では臨界にできない

濃縮ウラン3.0%

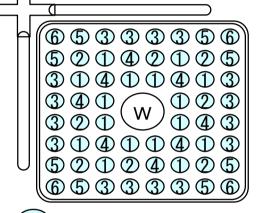
MOX (濃縮度3.0%相当)

燃料の核分裂能力(2)


燃焼中期 燃焼末期 濃縮ウラン3.0% 古い燃料だけでは臨界維持困難 MOX

MOX初期濃縮度の決め方(PWRの場合)

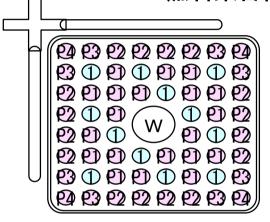
集合体の無限増倍係数は 燃焼とともに低下する


MOX燃料の無限増倍係 数の低下はウラン燃料 に比べて小さい

MOX燃料の集合体平均がウラン燃料の4.1%と同等になるよう初期富化度を調整

MOX燃料集合体内のプルトニウム含有率分布

ウラン燃料集合体の例



- 1 : 最高濃縮度燃料棒
- 6 : 最低濃縮度燃料棒
- (1) ~ (6): この順で濃縮度が小さく

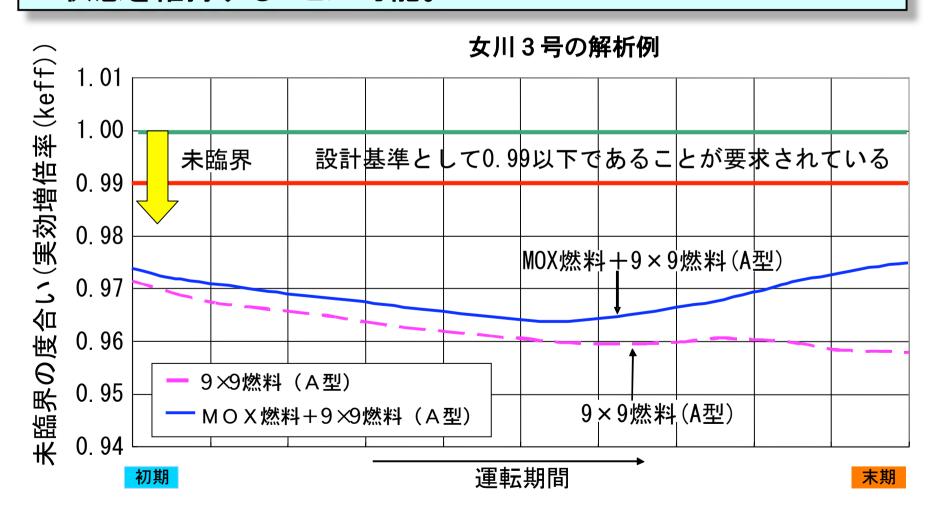
なることを示す

W:ウォータロッド(1本)

MOX燃料集合体の例

- ①:ウラン燃料棒
- ② :最高Pu富化度MOX燃料棒
- (P) ~ (P4) : この順でPu富化度が小さく

なることを示す


(W):ウォータロッド(1本)

MOX燃料集合体の仕様

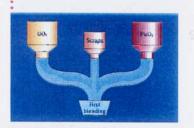
	ウラン燃料 (高燃焼用)	MOX燃料 (女川 3 号)
集合体最高燃焼度 (MWd/t)	5 5,0 0 0	4 0,0 0 0
平均濃縮度(wt%)	約3.7	3. 0相当
燃料形式	9 × 9	8 × 8
燃料棒本数	7 2 または 7 4	60 (内MOX48)
燃料棒有効長(m)	3. 7	3.6 MOX燃料棒
ペレット密度 理論密度に対する割合	9 7 %	9 5 %MOXペレット

停止している原子炉の停止状態を維持する機能

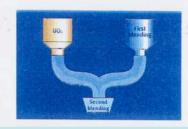
MOX燃料装荷炉心でも、従来のウラン燃料炉心と同様に、停止状態を維持することが可能。

ペレット内のプルトニウム含有率の不均一 ープルトニウムスポットについて一

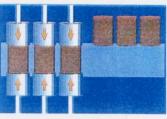
ペレット内のプルトニウムスポットは400μm (0.4mm) 以下とする


最大スポット(観察結果) MIMAS法(フランス) 214μm SBR法(イギリス) 100μm

- 定格運転時 スポット内の温度上昇は数℃ 初期に消滅
- 異常時


燃料破損の判断基準への影響なし (NSRRでの試験 400μm、1100μmのスポット共存)

燃料製造方法(メッロクス社)

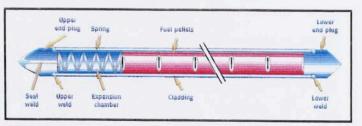

The A-MIMAS fuel fabrication process

Pu+U粉末混合

MOX粉末+U粉末混合

3 Pressing or pelletizing

Sintering

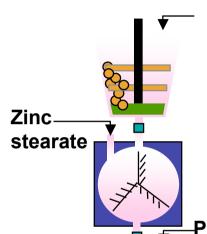


5 Grinding

6 Rod cladding

Light water type fuel rod

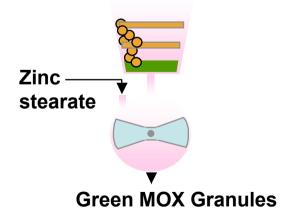
燃料製造方法(SL社)

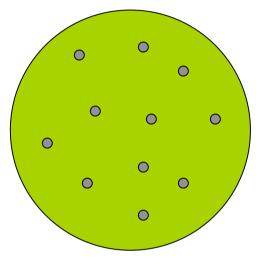

ATTRITOR MILL アトライタ

Attritor Mill (50kg)

Blender (150kg)

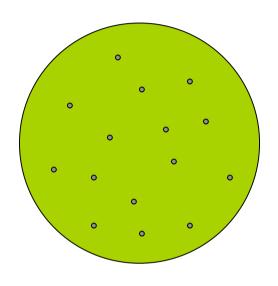
Attritor Mill (50kg)


Spheroidiser (50kg)


UO₂, PuO₂, Zinc stearate, Recycle

SBR法はSL社(旧BNFL社)で開発。ボールミルの替わりに混合エネルギーの高いアトリターミルを使用。これにより、粉砕混合の時間、工数を削減。高エネルギーミルなので、冷却等の課題も発生。2番目のアトリターミルは粉砕というより混合が目的。ポアフォーマは密度の調整剤。全粉粉砕のため、造粒する。

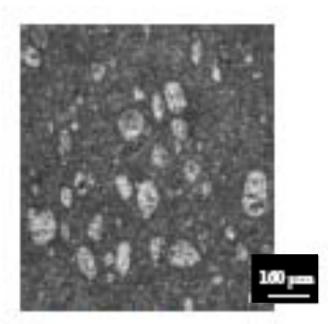
Pore former



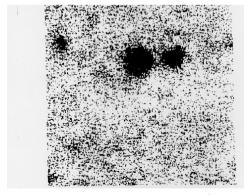
Puスポットの生成状況

二段混合法 (MIMAS)

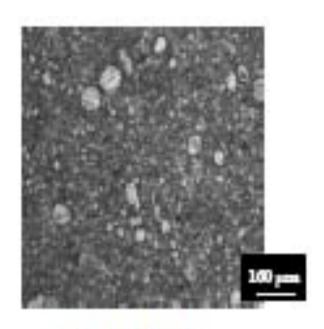
プルトニウムスポット大 最大214μm



一段混合法 (SBR)


プルトニウムスポット小 最大100μm

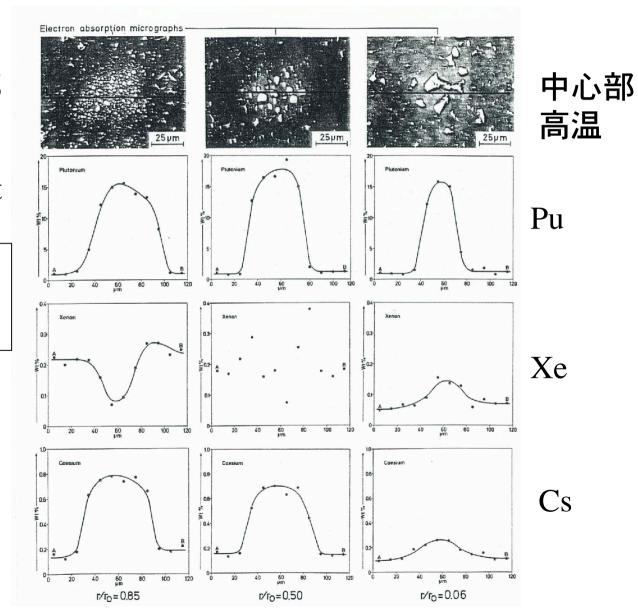
プルトニウムスポットの仕様: <400μ


Puスポットの生成状況

顕微鏡写真

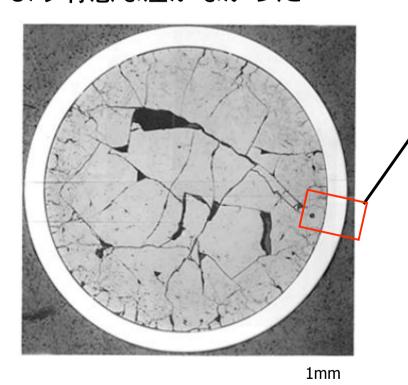
αオートラジオグラフ

Optimised

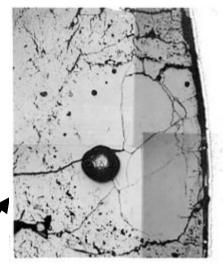

MIMAS法の最適化 (ふるい操作) 30µm以上25%→10%以下

Puスポットの燃焼

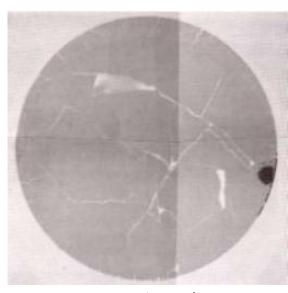
外周部 低温


23,200MWd/t

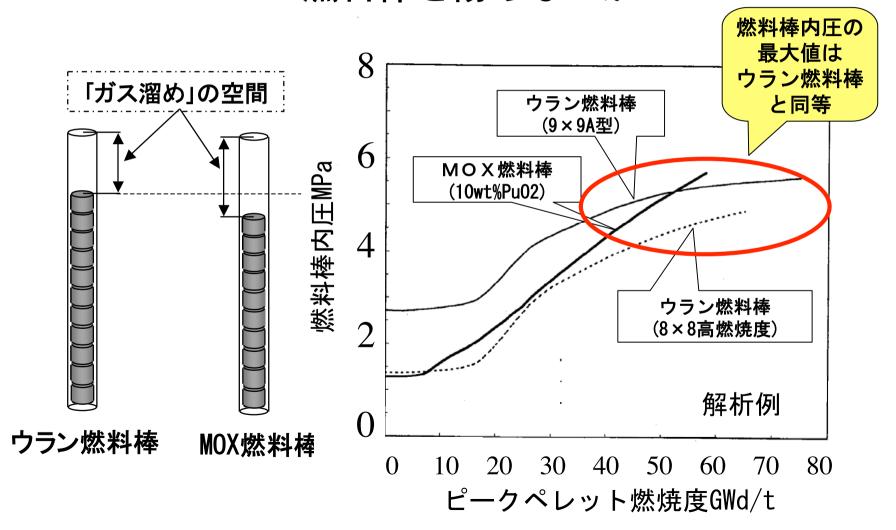
燃焼によって Puスポットが 分解される



NSRR試験 1100 μ m スポット


 ペレット表面に人為的に付着させた Puスポット部の局所的な溶融が認 められたが、反応度投入事故時の破 損限界に対してPuスポット有無に より有意な差がなかった

100%-1100μmPuスポット付き燃料のペレット金相試験結果(パルス照射後)

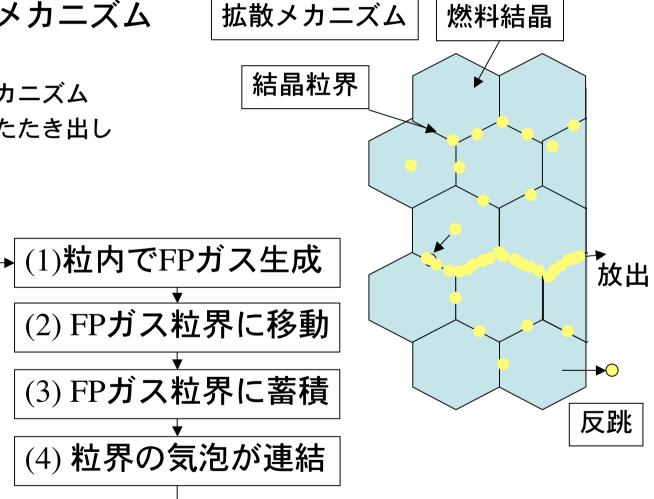


<αオートラジオグラフ>

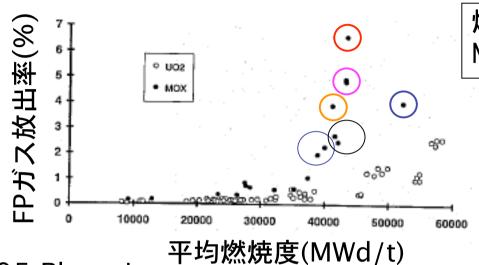
核分裂ガス放出

燃料棒内に核分裂生成ガスが異常に充満して 燃料棒を傷めないか

核分裂ガス放出モデル

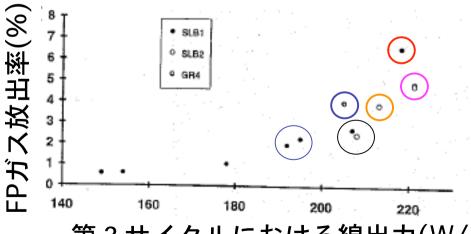

FPガスは下記のメカニズム で放出される

中高温領域:拡散メカニズム


低温領域 : 反跳、たたき出し

• 解析プログラム

FINE, FPAC


核分裂生成ガス放出率測定結果

燃焼度と共に放出率上昇 MOX燃料の方が高め

予測の範囲内

IAEA1995-Blanpain

FPガス放出率は 燃焼末期での線出力 の影響を受ける

第3サイクルにおける線出力(W/cm)

核分裂生成ガス放出率測定結果

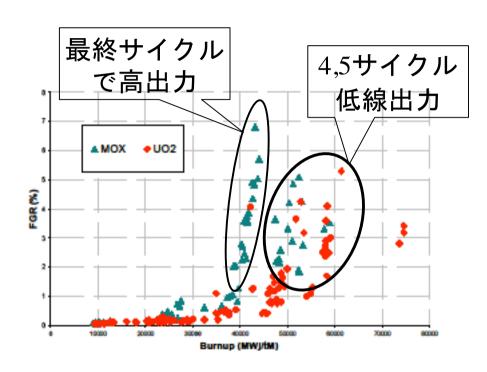


Figure 1. Fractional fission gas release as a function of burnup (French EDF 17x17 900 MWe reactor data)

ANS2004-Blanpain

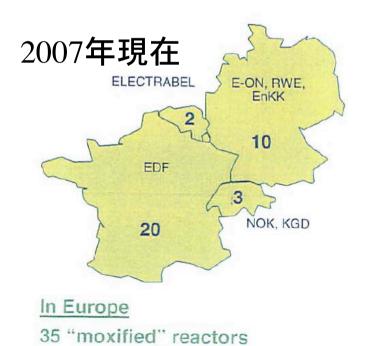
Proceedings of the 2004 International Meeting on LWR Fuel Performance Orlando, Florida, September 19-22, 2004 Paper 1075

追加データ

- MOX燃料特有のFPガス放 出の増加はみられない。
- 4、5サイクル使用の高燃 焼度燃料においても、異常 なFPガス放出は起きていな い。

(最終サイクルで低線出力運転)

• FPガス放出率の増大傾向は 主に線出力の影響によるも ので、燃焼度の進行による ものではない。


MOX燃料使用の実績

島根2号炉の数十年分の実績

集合体数

In United States



国(発電所)	2004年末	2007年末
フランス(21基)	2,270	2,894
ドイツ(15基)	1,828	2,220
ベルギー(3基)	305	321
スイス(3基)	304	392
アメリカ(6基)	91	95
イタリア(2基)	70	70
インド(2基)	10	10
オランダ(1基)	7	7
日本(2基)	6	6
スウェーデン(1基)	3	3
計 (56基)	4,894	6,018
*ふげん	772	772

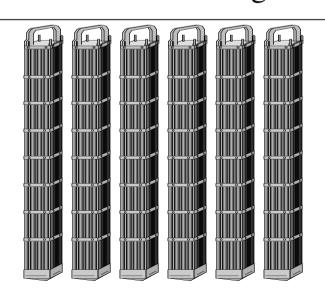
フランスのMOX利用

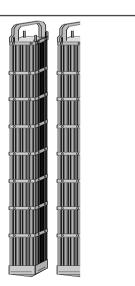
- 58基の原子炉運転中 6300万kW (88%:2007)
- 40gCO2/kWh(日本は約400g/kWh)
- 20基の原子炉でプルサーマル実施中(世界一)
- 追加ライセンス
 Gravelines 5,6 (2007.11.3)
 Le Blayais 3,4 (2009)
 - *Flamanville EPR

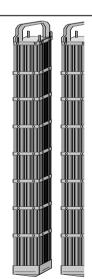
<u>Type</u>	CP0 CP1-2	P 4 P' 4	N4
<u>Power</u>	900 MW	1.300 MW	1.500 MW
<u>Number</u>	34	20	4
<u>Color</u>			

MOX燃料使用の実績 一出力、燃焼度、装荷率一

国	発電所	出力 万 kW	MOX装荷 開始	燃焼度 MWd/t	装荷率 %
ベルギー	ドール 3	105.8	1995	49,000	20
ネッカー2 イザール2 ドイツ ブロックドル グローンデ ウンターベーサ	グンドレミンゲン(B)	134.4	1996	55,000	26
	ネッカー2	136.5	1998	50,000	27
	イザール 2	145.5	1998	45,000	33
	ブロックドルフ	144.0	1989	50,000	33
	グローンデ	143.0	1988	50,000	33
	ウンターベーサー	135.0	1984	50,000	31*
	フィリップスブルク 2	142.4	1988	50,000	23
スイス	ゲスゲン	102.0	1997	52,000	36
東北電力	女川 3	82.5	2015 までに導入	40,000	32


まとめ


- ・プルトニウムを使用するにあたって、ウラン燃料と 大きく異なることはありません。
- 積極的に使用することによって、エネルギー資源を 有効に利用することができます。


1,000kg (約6体) 使用済みウラン燃料 Pu 10kg 回収U 960kg

MOX燃料 180kgPu(1.4体) ウラン燃料(3%濃縮) 250kgU(1.4体)

